Estimating The Mean Of Exponential and
            	Binomial Distributions
         	 
       	 
     	 
   	 
   	 
 	 
 	 
   	 
 	 
    
    
  	These two distributions are examples where there is only one parameter
  	to determine, the mean, since the variance is fixed, once the mean is.
  	The normal distribution does not have such a constraint.
    
	Exponential Distribution
    
  	Suppose you are measuring the decay times of a radioactive material.
  	Physics tells us that the time interval between successive emission of
  	radiation is a random variable with exponential distribution. That is,
  	the time to the next emission T is such that
    
    
  	P[T>t]=e-tμ
    
    
  	where μ is the mean of this variable.
    
    
  	We measure these times to emission n times,
  	obtaining a sample T1,T2,…Tn
  	that is very reasonably made up of independent identically distributed
  	variables, thanks to a law of nature.
    
    
  	To estimate μ, we need to get a handle on
  	the distribution of the sample mean, or, equivalently, of the sum of
  	these variables. It turns out that the distribution of the sum of
  	exponential random variables is a χ2
  	distribution, whose values are available in any spreadsheet, as well as
  	in tables on line and in any statistics textbook, since the same
  	distribution is used to estimate the variance of a normal sample!
    
    
 	 
    	Remark 1. χn2
    	is the distribution of the sum of the squares of n
    	independent standard normal variables. Note that for each such
    	variable, say Xk2
    	has true mean 1 (since E⁡Xk=0,
    	E⁡Xk2
    	is the variance of Xk,
    	hence equal to 1). Also, the variance is E⁡[Xk2-1]2=E⁡Xk4-1,
    	and calculations show that that's equal to 3-1=2.
    	Incidentally, the applicability of this to the estimation of the
    	variance follows from the observation that, if the true mean is known,
 	 
 	 
    	(Xk-μ)2σ2
 	 
 	 
    	is the square of a standard normal variable.
 	 
    
    
  	Precisely, if we consider the variables 2μTk,
  	they happen to be distributed according to the χ22
  	distribution, and hence their sum is distributed according to χ2n2
  	(the proof requires a bit of calculus, and we'll just take the statement
  	for granted). It also turns out that the true mean of a χ2n2
  	variable is 2n, and
  	its variance is 4n
  	(since we are adding independent variables, both the mean and the
  	variance equal the sum of the individual means and variances), thanks to
  	the remark above. If n is large (for
  	example, n≥50,
  	so that 2n≥100⁡),
  	we can apply the Central Limit Theorem (and, indeed, you can check in a
  	table that χn2
  	looks more and more like a normal distribution), and conclude that
    
    
  	2μ∑kTk-2n4n=1n∑kTk-12μ
    
    
  	is approximately distributed like a standard normal variable, so that,
  	for example,
    
    
  	P[|T‾-12μ|<zα/2]=α
    
    
  	Solving for μ, produces a confidence
  	interval of level α, and, as you can see,
  	we end up using our familiar tables without having to go to a Student
  	distribution, whose applicability is questionable, since it would not
  	only require that the mean be approximately normal, but also that the
  	sample variance be approximately χ2,
  	a much less likely situation
    
    
 	 
    	Note 2. The exact estimate, without using a normal
    	approximation, is actually just as easy:
 	 
 	 
    	2nT‾χ2n,1-α/22<μ<2nT‾χ2n,α/22
 	 
 	 
    	and is definitely preferable
 	 
    
    
  	Note that we can use the same approach to the problem of testing for the
  	mean. However, if we want to be sloppy, we can use the
  	“usual” testing strategy, using a normal distribution, since
  	assuming that the true mean is μ, implies
  	that the true standard deviation is also equal to μ.
  	In other words, we could use as “test statistics”
    
    
  	nT‾-μμ
    
    
  	instead of the, more correct,
    
    
  	T‾-12μ
    
    
  	However, since
    
    
  	μ2nT‾
    
    
  	has a χ2n2
  	distribution, the better test relies on this, rather than those
  	approximately normal choices.
    
	Binomial Distribution
    
  	Consider a coin tossing experiment, where we count the number of heads.
  	Assuming the coin may be biased, call p the
  	probability of coming up heads in a single toss. If the tosses are
  	independent and identical (same coin, no cheating), we saw that the
  	probability of ending up with k heads, in
  	n tosses is given by
    
    
  	P[X=k]=n!k!(n-k)!pk(1-p)n-k
    
    
  	(n!, read as
  	“n factorial”, is the product
  	of all integers form 1 to n:
  	1⋅2⋅…⋅(n-1)⋅n).
  	The true mean for X is n⁡p,
  	and its true variance is n⁡p(1-p).
    
    
  	Since X is actually the sum of n
  	independent random variables (each equal to 1
  	if the toss came up heads, and 0 if it came
  	up tails), the Central Limit Theorem tells us that 1nX=X‾
  	will be well described by a normal distribution for n
  	sufficiently large, and p not too close to
  	0 or 1. You
  	may recall seeing one or more “rule of thumb” suggested for
  	determining whether normality is a reasonable approximation. Note that
  	X‾ has true
  	mean p, and true variance p(1-p)n.
    
    
  	If we want to use this experiment to estimate p,
  	we can use the normal approximation, but since p
  	is unknown, we do not know the variance. One could think of using a
  	Student distribution for this purpose, but this is not recommended, as
  	conditions are not quite right, and one feels that with the variance
  	being so closely tied to the mean, we may avoid that.
    
    
  	A common approach is to use the sample mean in place of p
  	in the variance formula. Thus, if (as is often written), the sample mean
  	is p^, one
  	would use the normal distribution, with unknown mean p,
  	and “known” variance p^(1-p^)n.
  	As we already discussed in this course, the result is a confidence
  	interval that may be too small or too large, with no way of knowing
  	which way it may be “wrong”.
    
    
  	A more conservative approach starts from the observation that, since
  	0⩽p⩽1,
  	p(1-p)⩽14.
  	Hence, using 14 as
  	the value of the variance sets us up in the “worst case”,
  	and will result in a confidence interval which will be no smaller than
  	the “true” one. In other words, we would estimate
    
    
  	p^-zα/2⋅14n⩽p⩽p^+zα/2⋅14n
    
    
  	There is actually yet another way to proceed, but it is not popular,
  	since it is not nearly as straightforward and automatic, as it requires
  	more manipulations. Writing out the fact that the sample mean is
  	approximately normal, we have that an interval estimate at confidence
  	level α is given by
    
    
  	p^-zα/2p(1-p)n⩽p⩽p^+zα/2p(1-p)n
    
    
  	p^ is again the
  	sample mean here. Looking at the inequalities as two quadratic
  	inequalities in p, we can solve them and
  	find a more precise interval estimate than either of the methods
  	mentioned above:
    
    
 	 
   	 
      	zα/2np2+p(1-zα/2n)-p^⩽0
     	 
     	 
   	 
   	 
      	zα/2np2-p(1+zα/2n)+p^⩽0
     	 
     	 
   	 
 	 
    
    
  	You would get an estimate by finding all values of p
  	that satisfy both inequalities.
    
    
  	This issue is not present when testing for p,
  	because in this case we are assuming that p
  	is a given value, so that the corresponding variance for the sample mean
  	has to be p(1-p)n.
	

