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1 Basic Idea

Let’s assume, at least at first, that we are making observations of a genuine
normally distributed random variable. According the the usual mathematical
model then, we come up with numbers x1, x2, . . . , xn, that we consider obser-
vations of n independent identically distributed variables, all with a normal
distribution, and let’s call the mean and the variance of this distribution µ, and
σ2. Traditionally, we denote this variables by X1, X2, . . . , Xn.

The first observation (its relevance is due to the fact that for decades people
had to rely on tables to compute probabilities of the normal distribution, and,
even today with our powerful computers, it may be faster to use a table for a
quick and dirty estimation) is that, if we call X̄ the random variable 1

n

∑n
k=1

Xk,

this has again a normal distribution, with mean µ, and variance σ2

n , so that

X̄ − µ
σ
√

n

=
√
n
X̄ − µ

σ
(1)

has a standard normal distribution (mean 0 and variance 1). This means that,
if we know the value of σ, we can, for example build confidence intervals for
µ, or check if the observed value for the mean (x̄ =

∑n
k=1

xk) happens to be
so far from the mean µ that we assume is true, that it suggests that we were
wrong in assuming that to be the mean (in other words, we have a tool to reject
hypotheses on the mean).

Thus, if we are looking for, say, a 95% confidence interval for the mean, we
can write that (with that level of confidence)

x̄− 1.96 ·
σ
√
n
< µ < x̄+ 1.96 ·

σ
√
n

(2)

This is all fine, but, in reality, it is highly improbable that we know the
value of the variance. We can create some situations where this may be the
case, but they are few, and not always ironclad. If we don’t know the variance,
we cannot use the methods sketched above for estimating or testing for the
mean. This is where a statistician working for the Guinness brewery in Dublin,
Mr. William Gosset, enters the scene. He could not publish his results under his
own name, because Guinness was paranoid about publication of “trade secrets”,
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but, after developing a rigorous methods to deal with this issue, he improved
the brewery’s quality control enormously, and published (under the auspices of
Roland Fisher) his results under the pseudonym “Student”. Too bad we keep
calling this “Student’s” this and that (method, distribution, and so on), instead
of Gosset...

“Student’s” trick was, essentially, to sit down and do a lot of tedious calcu-
lations, resulting in the computation of the distribution of

X̄ − µ
s

√

n

=
√
n
X̄ − µ

s
(3)

i.e., something that looks very much like (1), but involves the observed sample1

standard deviation, rather than the unknown square root of the “true” variance.
While the distribution of (1) is the same for all n, this is not the case for (3),
and, for quirky historical reasons, the distribution of (3) with a given value of
n is called the “Student distribution with n− 1 degrees of freedom”.

Thus, if we have our observations and we cannot pretend to now the value
of the true variance, we will write a confidence interval very much like (2),
except that, instead of “1.96” we will plug in a number picked form the table
for the Student distribution with n−1 degrees of freedom, corresponding to the
appropriate confidence level.

If you look at the graph of the density of Student’s distributions, you will see
that they too are symmetrical and bell-shaped, but they are squatter, wider,
than the normal distribution (they result in larger confidence intervals, as is
reasonable, since we have less information). The higher n the closer the cor-
responding Student distribution is to a standard normal, but there are small
differences even for n = 100 or higher.

In practice, if n is large, it really makes very little difference: most obser-
vations are not so precise that a change in the third decimal from 1.96 will
make any difference at all, but it all depends on your data. If you are into high
precision measurements, it may be worth the trouble.

2 Cautionary Notes

Assuming an underlying normal distribution is, in most applications, not quite
as solid an assumption as we may like. However, as long as we are dealing with
the “known variance” case, the Central Limit Theorem assures us that if n is
reasonably large, even if the individual X1, X2, . . . are not quite normal, X̄ will
essentially be. That makes the use of (1) fairly universal. However, as noted,
its use requires us to know the true variance, and that is pretty unusual.

So, what about the more realistic case? Strictly speaking, Gosset’s calcula-
tions are strongly dependent on the assumption that the X1, X2, . . . are indeed
normal so the reliability of its method is, for very strict theoreticians, pretty

1 Gosset could, just as well, have used the population standard deviation, resulting in

slightly different numbers, but he did not, so we are stuck with his choice
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limited. Practitioners couldn’t care less, and use Student distributions all the
time, regardless. While this can be, at times, a bit reckless (and is sometimes
really unnecessary, since one could use different distributions, more appropriate
to the experiment, and obtain better grounded results), there are theoretical
results that show that results obtained this way are reasonably accurate, pro-
vided the true distribution, even if not quite normal, is at least symmetric and
not too spread out. What you or I can make out of this is very subjective:
after all, statistics is a bridge connecting a fairly sophisticated theory with ev-
eryday concerns and needs, and what compromise is acceptable depends on the
circumstances, and, also, who you ask.

Let’s spell out the main point of this issue: while the Central Limit Theorem
guarantees that, for n sufficiently large (and “sufficient” is not very large, if the
true distribution is not terribly asymmetric), X̄ has, for all practical purposes,
a normal distribution. However, to state that (3) has a Student distribution,
we also need s2 to have a fairly approximate χ2 distribution. While one can
argue that “for sufficiently large” n this will happen, the “sufficient” size is much
higher than the one needed for the normality of X̄ . Thus, the studies mentioned
above, about symmetry and not excessive dispersion ensuring a useful outcome
of an analysis using Student’s distribution are highly non trivial.

3 In Practice: Tests

3.1 The formulas

Suppose we are implementing a two-tailed test (one-tailed tests are even sim-
pler), for the mean of a normal random variable X , say mean = µ0, and the
average of our n observations was x̄. First of all, let’s set up a test, with signif-
icance level α.

3.1.1 Case 1: We Know The Variance σ2

We use the notation zγ (a widely used notation) to indicate a number such that
P [Z > zγ ] = γ, where Z is a standard normal variable. Under our assumptions,

√
n
x̄− µ0

σ

is a standard normal, hence it falls between −zα/2, and zα/2 with probability
α. Consequently, we will not reject the hypothesis mean = µ0, if x̄ is such that

l = µ0 − zα/2
σ
√
n
≤ x̄ ≤ µ0 + zα/2

σ
√
n
= u

The interval [l, u] could be called the “acceptance region”, and it is the range of
observed mean that make the test non significant.

Let’s now consider an alternate hypothesis for the mean, say mean = µ1.
Even if this was true, we would still not reject µ0, as long as the observed mean
was in [l, u]. This “mistake” can happen with a probability that we can compute,
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under the assumption that the true mean is µ1: in fact, if Y is a normal random
variable with mean µ1, and variance σ2, then

P [l ≤ Y ≤ u] = P

[

√
n
l − µ1

σ
≤

√
n
Y − µ1

σ
≤

√
n
u− µ1

σ

]

and the quantity in the middle is a standard normal variable. This probability
is the probability of an “Error of Type II”. The power of the test, at µ1 is given
by 1−this probability.

Repeating for other values of the mean, we can compute how the power
changes as we change the mean.

3.1.2 The Variance Is Unknown

The convenience of the Student distribution is that we need not change anything
in the discussion above, safe making a few simple substitutions:

• use the sample standard deviation s, where we were using the true stan-
dard deviation σ

• use the tn−1 distribution, where we were using the standard normal dis-
tribution

The formulas translate directly, with tn−1,γ (the number such that P [T > tn−1,γ ] =
γ, if T is distributed according to tn−1), in place of zγ . The advantage of using
software instead of tables is huge now: tables for the Student distributions only
list values tm,γ for a very limited choice of γ. This is not a big deal in interval
estimation, or in significance testing, since people are accustomed to consider
only these special values as levels. When it comes to compute powers, however,
we end up looking for probabilities that may not be listed in such tables, and
would have to employ a lot of guesswork. A computer has no such limitation,
of course.

3.2 A Numerical Example

3.2.1 Known Variance

Suppose n = 25, µ0 = 10, α = 0.05. Suppose, at first, that we know that σ2 = 9.
Then, our acceptance interval is an interval such that a normal random variable
with mean 10 and standard deviation 3

5
(that’s σ

√

n
, the standard deviation of the

average observation) falls there with probability 0.95. We can use tables, or we
can use a computer, and end up with the interval (z0.025 = 1.96, approximately)

[

10− 1.96 ·
3

5
, 10 + 1.96 ·

3

5

]

or
[8.824, 11.176]
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Now, assume µ1 = 11. From the previous discussion, we need to find the
probability that a standard normal variable falls within

[

5 ·
8.824− 11

3
, 5 ·

11.176− 11

3

]

[−3.627, 0.293] (4)

Using tables or software, that’s about 0.615. The power of our test, for µ = 11,
is equal to 0.385

The calculation in a spreadsheet is very quick: normsdist(0.293)

- normsdist(-3.627)

Consider now as an alternate hypothesis that the mean is 15. In this case, we
repeat the calculation for the interval

[

5 ·
8.824− 15

3
, 5 ·

11.176− 15

3

]

[−10.30,−6.37]

which has a really small probability: about 9.25× 10−11, for a power of practi-
cally 1.

3.2.2 Unknown Variance

To check how the choice of a Student distribution inevitably creates larger ac-
ceptance regions (and hence, makes it harder to have significant results), let us
now assume that s2 = 9, that is let’s work with a sample standard deviation
equal to the assumed “true” variance in 3.2.1.

The calculations are similar, with the only change being the use of the dis-
tribution t24, instead of the standard normal. The acceptance interval is now
(t24,0.025 ≈ 2.064)

[

10− 2.064 ·
3

5
, 10 + 2.064 ·

3

5

]

[8.7616, 11.2384]

(obviously larger than (4)).
The probability of ending up there if the true mean is 11, is given by the

probability that a variable, with t24 distribution falls in

[

5 ·
8.7616− 11

3
, 5 ·

11.2384− 11

3

]

[−3.7307, 0.3973]

From software, this probability turns out to be 0.6521, and the power is, ap-
proximately, 0.348. Note that if we are restricted to tables, we would have been
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in quite a bind, since 0.3973 is so far from the tails that almost no table will be
of help.

The alternate hypothesis of a mean of 15 similarly leads to a power of prac-
tically 1: the interval is now

[

5 ·
8.7616− 15

3
, 5 ·

11.2384− 15

3

]

[−10.397,−6.269]

and the probability of ending there is again very small: about 8.82× 10−7 (still
quite larger than what we got for a normal distribution).

3.2.3 Reading The Results

Of course, we would repeat the calculations for many more values of the mean.
By the symmetry of the distributions involved, our result for 11 is the same as
what we would get for 9, the result for 12, would be the same as the result for
8, and so on. Now, that we have these numbers we would like to do something
with them.

First, note how, as expected, we have a more powerful test if we can refer
to the normal distribution. This is very reasonable, since in the second case, we
have less information (we don’t know the true variance, and so we have higher
incertitude.

Second, what does, for example, the result that the power of the test is 0.348
for a mean of 11 mean? That means that, if the true mean is not 10, but 11, our
test will recognize that 10 is not the correct value with probability of only 35%.
Clearly, most of the time we will not reject the hypothesis that the mean is 10.
In other words, if the mean is 11, we won’t be really able to tell the difference
with any likelihood.

We will be much more confident about our ability to spot the mistake in
assuming that the mean is 10 for alternate values such that the power of the
test is much higher, for example 90% or better. There is no question that the
likelihood of not rejecting the hypothesis that the mean is 10 would be negligible
if the true value was 15.

This kind of information allows us to be much more precise about what we
mean when we say that a test is not significant. We could not reject the Null
Hypothesis, and while that does not imply that the Null Hypothesis is actually
true, it gives us some confidence about the fact that the true value, while not
necessarily 10, is not terribly different either.

The final observation concerns the difference in outcomes between calcula-
tions using the normal and the Student distributions. The difference becomes
smaller as the sample size increases (it can be shown that as n grows the Student
distribution becomes indiscernible form the standard normal distribution). If
you look up a table for the t-distribution, you will notice this tendency. Since
it is mildly easier to deal with the normal tools, we may wonder when will it
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be OK to use them, even if the variance is unknown. As expected, the an-
swer has to be “it depends”. As you can check, there are still differences when
n = 1000, but they are very small. Whether this difference is worth worrying
about depends on what precision your data actually has. If you are working
at the High Energy Hadron Collider in Geneva, you are probably working with
extremely high precision data, and small differences can have a big impact. If
you are dealing with rough data, where two significant digits, at most, are re-
liable (that is, for example, 2.31 or 2.34 are to be considered meaningful only
as 2.3, the extra digit being essentially a random guess), you won’t need a huge
sample before you may feel fine with a simple normal model. Statistics, since
it straddles between sophisticated abstract math and practical, down to Earth
applications, rarely provides a clean cut prescription: common sense will be
your most valuable asset in this field.

4 A More Detailed Example

Check out the accompanying spreadsheet file (in *.gnumeric, *.ods – Open/LibreOffice
– and *.xls formats), for a one-tailed test setup, both in the normal and in the
Student case. In particular, the different coding of normal and Student distri-
bution functions requires different formulas for the two cases.


