
Statistical Tests - 2

The Power of a Test

In the first part we relied mostly on controlling Type I errors, but what about Type II? As defined, it
measures the risk of accepting a hypothesis that is false. A moment’s reflection shows that this proba-
bility, often denoted with the letter β, depends on what the true value is. Since we don’t know the true
value (why would we be doing statistics, if we did?), it is more appropriate to talk about a function β(µ),
which depends on what the true value of the expectation is. So, to be as clear as possible:

β(µ) is the probability of not rejecting the Null Hypothesis, when the true value of the mean
is µ. In particular, β(µ0) is precisely the probability of accepting that µ= µ0 if that’s indeed
the case. It follows that β(µ0) = 1−α, 1 minus the probability of a Type I error. That’s not
the interesting case, but it sets the starting point.

Actually, it is more common to discuss in terms of 1− β(µ), called the power of the test—but this is only
a question of taste.

The power function, we’ll denote it here with a capital Greek pi letter, Π(µ), is the proba-

bility of rejecting the Null Hypothesis, if the true value of the mean is µ. Just as we men-
tioned above, we have that Π(µ0)=α, the probability of a Type I error.

To understand how we can use the notion of power (or of Type II error) to clarify what our testing really
says, let’s take one of the examples from the previous module, and look closer at the alternate hypothesis.

Consider the case where our sample, with n= 9, returned a sample mean X̄ = 10.5, in a test in which the
Null Hypothesis was µ 6 10, with the variance assumed to be known and equal to 1. Like we noted
already, the p-value of this test was 0.144, which is pretty high, so that it would not lead us to reject the
hypothesis.

But what if we were wrong? Well, suppose µ was actually larger than 10. Let’s assume that we have set
our significance level to a fixed value, say 95%=1−α. Then, we have a threshold value, precisely

xα= µ0+ zα
σ

n
√ = 10+ 1.645 ·

1

3
= 10.548

(zα is a common symbol to indicate the value such that, for a standard normal random variable Z, P [Z >

zα] = α). If X̄ is greater than this threshold value we would reject the hypothesis, but if it is less we
would not. Now, if the true value was µ > µ0, with our protocol, the probability of rejecting the Null
hypothesis would be the probability of a normal random value, mean µ, standard deviation σ/ n

√
= 1/3

(because that’s what we already know), to be greater than 10.548. In formulas, denoting by Yµ such a
variable,

Π(µ) =P [Yµ>xα] =P

[

Yµ− µ

σ/ n
√ >

xα− µ

σ/ n
√

]

=P

[

Z >
10.548− µ

1/3

]

This is function of µ, and we can use tables or, more conveniently, a spreadsheet, to compute some of its
values. Programing the function 1-normsdist(31.645-3*[µ]) (here, [µ] is the spreadsheet cell where we
wrote in a value for µ), we can come up with the following table (obviously, all values are rounded)
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µ Π

10 0.05

10.25 0.185

10.5 0.442

10.75 0.727

11 0.912

11.25 0.982

11.5 .998

11.75 .9998

12 1

12.25 1

Table 1.

It may be more striking to graph this table:

How should we read this table? If we set ourselves the goal to be right 90% of the time, we learn that we
will be right in rejecting the Null Hypothesis whenever the true value of the mean is 11 or higher. If the
true value is closer to 10 than that, things are not as clear cut. Even if µ= 10.75, we will correctly reject
the Null Hypothesis 73% of the time, but that means we will have been going overboard 27% of the time,
which is a bit uncomfortable.

“Resolution Power”

As should be clear by now, statistical statements are not as clear cut as we might like them to be. How-
ever, we can now look at our hypothetical experiment and be a bit more specific:

By setting a 95% confidence level, in not rejecting the hypothesis that µ6 10, we can safely
say that we will be able to exclude that the true value is 11 or greater (we will be right 90%
or more of the time). We cannot be as confident that the true value is not somewhere
between 10 and 11.

Although this is not standard terminology, we can think of this calculation as zeroing in on the resolution

power of the test. Imagine you are taking a photo. There are two sources of light out there. Each sends a
ray of light (a “photon”, more precisely), and this ray generates a blip on your film or your solid state light
receiver. If the two blips are too close, you won’t be able to tell them apart. There is a minimum distance
between the blips that will allow you to say that there were two sources. This is the “resolution power” of
your camera/lens/film combo. Similarly, tests have a “resolution power”: they can tell when two
hypotheses are far enough apart to be sorted out, but they cannot distinguish between two situations
when the two alternatives are too close together.
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To drive this further home, let’s look at the graphs for the distributions of normal random variables with
standard deviation

1

3
(that’s the standard deviation of our means), and, respectively, µ = 10 (blue), µ =

10.5 (red), and µ= 11 (green). Thinking of these as the blobs produced by photons hitting on a film plate
(these would be, approximately, Gaussian-shaped too), you may appreciate how it is much harder to tell
the blue and red apart, than it is to tell the blue and green:

Now, pushing our hypothetical experiment further, what if we really needed to be able to tell 10 and 10.5
apart? Clearly, our experiment doesn’t cut it. We need another experiment, but how can we make it do
the job? Well, as you can imagine, if we have no control on σ (that is, we have no access to a more precise
instrument), we can still improve our resolution power, because we are testing means: their standard devi-
ation—which determines the spread of the “bell curve”—is σ/ n

√
, hence to have tighter curves, and hence

less overlap for given values of µ, we can increase n. If your test does not have a good enough resolution
power, one way to improve it is to take a larger sample. It may take a much larger sample: notice how
your standard deviation will decrease as the square root of n: to decrease it by a factor of 2, you need 4
times as many observations, but that’s the way it is.

Other Tests

The discussion here has concentrated on the simplest possible test: testing for the mean of a normal
random variable, with known variance. Hopefully, the basic idea was highlighted, as we were not encum-
bered by subtleties like handling strange distribution families. With proper care, the same approach works
in any other situation.

For example working on a two-tailed test (as in H0: µ= µ0, H1: µ� µ0), things are very similar, except you
have to worry about both values smaller as well as larger than µ0.

Also, it is pretty clear how we should proceed if the variance was unknown (the more common case). In

this case, we would be working with n
√ X̄ − µ

s
, a random variable with tn−1 distribution. Again, we would

repeat the same strategy, and working with a spreadsheet makes life much easier, since you have then
access to the function tdist, the survival function (1− the cumulative distribution function) of the Student
distribution (you will have to specify the x, the number of degrees of freedom, and whether you are con-
sidering a one-tailed or a two-tailed test). Otherwise, things follow the same steps.
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