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Our first example of the use of Probability in a statistical problem addresses the following problem:

We have observed a sample from a distribution that we have broadly identified, up to
one or more parameters. We want to use our sample to narrow down the estimation of this
(or these) parameters as much as possible

Recall that a “sample” is, mathematically speaking, a collection of independent identically distributed
random observations.

For example, we might have reason to believe that the distribution at work is exponential, and want to
determine the value of its parameter (or, equivalently, of its mean). Similarly, if the distribution can be
assumed to be normal, we might want to determine its mean, variance or both. We will concentrate on
one approach to this problem: Interval Estimation . That is, we will look for an upper and lower bound for
the value of this parameter. Given the nature of our model, these bounds cannot be 100% certain, except
in trivial cases, so we will have to be content for these bounds to have a high degree of likelihood, but no
certainty.

As a simple example, suppose we toss a coin a large number of times, in order to determine whether it
a fair coin or not. Assume also that the coin is in fact fair , even if this fact is unknown to us. The count
of the number of heads follows a Binomial Distribution, and so, even if the coin is fair, it is not impossible
to, say, observe only heads over all tosses. Though, admittedly, this is a very unlikely situation, if it actu-
ally happened, it would obviously suggest to us that the coin is badly unfair, and lead us to estimate the
probability of heads to be extremely close to 1. This would be wrong, since the coin was fair, and we were
simply victims of a case of extreme bad luck, but we would not have any way to know, without further
information. Thus, in an experiment like this, there is a slim probability of getting things very wrong,
which forces us to admit that any statement we may make can only be regarded, at best, as “most likely
correct, but there’s always a chance it might be badly off”.

In this Module, we will not cover every possible example nor even all the ones you may encounter. We
will concentrate on three common cases, trying to focus on the general method, which could then be
applied to many other situations
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Chapter 1

Estimation Model

We assume we have repeated observations of a quantity. As examples, we may consider

• repeated measurements of a physical quantity (e.g., the mass of an object, or the voltage produced
by an electrical generator, etc.)

• repeated sampling of a large population (e.g., polling the American public)

• repeated lifetime tests of a product (e.g., repeated observations of the time to failure of machines
produced by a given assembly line)

In all these cases we construct a mathematical model of our experiment as follows.

• We posit an abstract sample space Ω

• Each observation we make is considered as the observation of a random variable Xi, i = 1, 2, 	 , n

(where n is the number of observations), defined on this space.

• In general, we are trying to recover the joint distribution of these random variables

• As a general problem this is usually too ambitious, hence, we assume that our experiment was set
up in a way that allows us to make several drastic simplifications, as follows.

The following additional assumptions are not always appropriate, although they are most common. In
particular, some famous failures of statistical science can be ascribed to their arbitrary application to situ-
ations that did not warrant it.

• we assume that the random variables Xi are independent and identically distributed. Inde-
pendence is a delicate point, as we can all imagine, but the "identical" in the second requirement
should also be carefully considered.

• We can assume that the common distribution of the variables is known, up to the determination of
one or more parameters. This can be a pretty hefty assumption, that may be justified by an anal-
ysis of the features of your experiment (e.g., it is presumably reasonable to assume that the obser-
vation of a physical quantity is normally distributed, as its fluctuations are assumed to be caused
by many small and independent error sources, so that the Central Limit Theorem can be safely
applied).

• If we cannot be too sure of the underlying distribution, we can still try to estimate some param-
eter, for example its expected value, because it seems reasonable, for example, given the size of the
sample, and, possibly, some qualitative assumptions on the distribution (e.g., symmetry around the
mean, existence of the variance) that it can be assumed to have an approximate normal distribu-
tion.

With these assumptions in hand, we now proceed to construct a function of the observations (technically
called a "statistic", with a not too felicitous choice of terminology) that can tell us something about the
parameter(s) we are trying to determine. Typically, we will be looking at a combination of the observa-
tions that has a known distribution (at least, approximately), and is more or less centered around the
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parameter in question.

Chapter 2

Estimating the Mean of a Normal Distribu-
tion

This is a very common case, and, thanks to the Central Limit Theorem, applies even to situations where
the underlying distribution is not really Normal. In fact, if the sample is “large enough”, we know from
that theorem that the sample average

X̄ =
1

n

∑

k=1

n

Xk

will be approximately distributed as a Normal Random Variable, with mean µ=E[Xk], and variance σ2=
Var[Xk]

n
(all observation have the same expected value, and the same variance, since they all have the same

distribution). As we discussed in our second Probability Chapter, how large is “large enough” depends on
the features of the distribution of our Random Variables. Thus, if the distribution was very skewed, the
sample would have to be very large indeed for the theorem to apply. On the other hand a fairly sym-
metric distribution will let the theorem kick in very early.

2.1 Estimating the Mean when the Variance is Known

Suppose we know the value of Var[Xk], and want to estimate E[Xk]. In many cases this is an artificial
example, since this is a somewhat unlikely situation, but it applies to at least two important cases:

1. Our observations are measurements obtained using an instrument with a known (as determined by
the manufacturer) variance in its readings

2. We are observing a sample of Bernoulli Random Variables (and their parameter p is not extremely
close to 0 or 1)

In case 1, we may be measuring, for example, the voltage produced by a generator, using a voltmeter
whose manufacturer has assured us that its readings are normally distributed around the “true value”,
with a variance of v. This is possible because another common procedure is to estimate the variance of a
Normal Random Variable, when the mean is known (as is the case when we measure a standard source of
known “true value”), or even when the mean is unknown, as we will quickly sketch at the end of this
module. Looking at our sample average, we can now say that it too will be normal, with mean equal to
the unknown true value, and variance

v

n
.

In case 2, the sum of our observations is going to have a Binomial Distribution of mean np, and vari-
ance np(1− p). Of course, since we are looking for p, we don’t really know the variance. However, we may

note that 0 6 p(1 − p) 6
1

4
(try studying the graph of the function x(1 − x) = x − x2, when 0 6 x 6 1).

Hence, the variance cannot be larger than
1

4
, and if we use this value, we are just making a worst-case

estimate which is going to more or less pessimistic, but definitely not wrong on the optimistic side. In this
case, we will work under the assumption that our sample mean is (approximately) normal, with unknown
mean p, and variance

1

4 n
√ .

Remark 2.1. The method of assuming a “worst case scenario” of variance
1

4
for a binomial distribution

that we approximate with the normal is, I believe, the best: the result is “pessimistic” but systematically
on the same side. In other words, you know that the confidence level you are stating is always a bit too
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low. A popular alternative, is to use the sample mean (rebranded as p̂, meaning your estimate for the
true value of p) in the formula (that is, use p̂(1 − p̂) in place of σ in the formula below, rather than

1

4
).

This will obviously give you a narrower interval, at the price of not knowing whether you are being pes-
simistic or optimistic in your assessment of the confidence level. You can argue that the whole procedure
is approximate anyway (especially when the sample size is small), so a little extra fuzziness does not really
change anything.

In either case, and any other case where we may assume a known variance σ2, an unknown mean µ,
and observed a sample mean X̄ of n observations, we will be able to say that X has a normal distribu-

tion, with mean µ, and variance
σ2

n
, hence standard deviation

σ

n
√ . This information allows us to assign a

probability to any event of the form
{

a 6 X − µ 6 b
}

, and thus assign a probability to a statement

like “the true value µ is within this given distance from our observed sample mean, with this degree of
probability”. The “degree of probability” is ours to choose, and is usually called the “confidence level” of
our estimate. The usual procedure is to choose a reasonable confidence level, and adjust a and b conse-
quently. Usually, these are chosen so as to determine a symmetric interval around X , that is, b > 0, a=−
b, with the given confidence value. Since Y = X − µ is now a normal variable with zero mean and vari-

ance
σ2

n
, we can use our software to choose an interval with a desired confidence level.

We can also use a table, rather than software, and obtain the same result “by hand”. From what we
know about the normal distribution, the Random Variable

Z =
X − µ

σ/ n
√ = n

√ X − µ

σ

has a Standard Normal Distribution. The tables found in every probability or statistics book, as well as
everywhere on the World Wide Web, can be used to determine a symmetric interval around 0 where Z

will fall with an assigned probability. For example, you can see that

P [− 1.96<Z < 1.96]≈ 0.95

Thus, we may say that with approximately 95% confidence, we may state that

− 1.96< n
√ X − µ

σ
< 1.96

− 1.96
σ

n
√ <X − µ< 1.96

σ

n
√

In common usage, confidence levels are often chosen as 0.9, 0.95, or 0.99 (the corresponding approximate
numbers we read off the tables are, respectively, 1.65, 1.96, 2.58 ). These choices are due, on the one
hand, to everybody’s love for round numbers, and, on the other hand, to Fisher’s choices, often dictated
by very narrow convenience factors: you are free to choose any level. Clearly, as we lower the confidence
level, we get narrower estimates (but we have a higher probability of being wrong), and, in reverse, by
allowing for estimates that are not as tight, we may gain a higher confidence level.

Remark 2.2. When applying this method to a 2-outcome experiment, i.e., using the normal distribution
in place of the theoretically correct binomial distribution, you will read about things like “continuity cor-
rection”, meaning that you are worried by the fact that your random variable should be an integer, but
your approximation takes any real value, and hence decide to approximate, say, P [X < k + 1], for the

binomial variable X , by P
[

X̃ < k +
1

2

]

, for your normal approximation X̃ to X . See the discussion in the

file on “Normal Approximation to the Binomial” in the Online Stat book - you will notice how the exam-
ples are for really small values of n. While this is certainly acceptable, it is one more example of splitting
hairs on a side issue. If this correction makes a real difference, chances are that your approximation is not
too good in the first place. If you are in real Central Limit Theorem territory, the correction should be
insignificant—if it isn’t, there may be much more important discrepancies between your approximation
and the “exact” model. Note that, although we won’t go there, it is perfectly feasible to do exact interval
estimation, without recourse to the CLT, using the binomial distribution. It is more cumbersome, and less
automated, and, for these reasons, is almost never done, but if we feel the need to split hairs, we might
have to bite the bullet.
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Of course, the discussion above applies to any discrete distribution that is being approximated through
the CLT.

2.2 Estimating The Mean When the Variance is Unknown

This is a more common situation. Unfortunately, the usual tools are limited to the case when the under-
lying distribution is really normal (as opposed to the previous case, the Central Limit Theorem does not
enter the picture as early). Still, the following method is the one people will almost always use, and there
has been research proving that the outcome is not that off the wall, even when the underlying distribution
is not normal, provided it is symmetric around the mean, and not excessively spread out.

Remark 2.3. The underlying fact at work in this context is that, as n increases, the distribution of the
sample mean approaches the normal distribution, and its value approaches the true expected value faster
than the corresponding fact for s2 (which does approach σ2, the true variance, but at a slower rate).
Hence, in general, expression involving more of the sample than X̄n will not behave quite like they would
if the underlying distribution was really normal.

Still, as we already mentioned, the shape of the underlying distribution makes a big difference in
speed. Hence, you will notice that the conditions for reasonable applicability of the Student distribution
are precisely the same that ensure that the Central Limit Theorem kick in early.

The method is based on the fact (discussed in the next chapter), that we can use the “sample standard
deviation” to get a grasp on the unknown variance of a normal distribution (we discuss the curious factor
of

1

n− 1
used in the sample variance in the next chapter). It turns out that, for a sample of n independent

normally distributed random variables,

Yn−1=
∑

k=1

n (

Xk − X̄n

)2

σ2
=

(n− 1)s2

σ2

has a χn−1
2 distribution. Now, Z =

X̄n − µ

σ/ n
√ is a standard normal variable. Hence, the quotient

Z

Yn−1

n− 1

√ = n
√ X̄n− µ

σ
·
σ

s
= n
√ X̄ − µ

s

has a tn−1 distribution. Note the formal similarity with the quantity used when the variance is known: we
exchange the (unknown) variance for the sample variance, and switch to a Student distribution, but the
formula is very similar.

Looking up tables for the t distribution with the appropriate number of degrees of freedom, or simply
using our spreadsheet, we can then work as in the previous section.
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Chapter 3

Estimating the Variance of A Normal Vari-
able, and a Bonus Consequence

3.1 Estimating the Variance When the Mean Is Known

Again, this is a bit of an artificial situation, but it applies, for example when we are calibrating an instru-
ment by measuring a well known quantity (for example, when testing a length measuring instrument
against a Bureau of Standard sanctioned length), in order to evaluate its incertitude.

The relevant observation here would be that the variables

Zk=
Xk − µ

σ

are standard normal variables, so that
∑

k=1
n

Zk
2 has a χn

2 distribution. Hence, using a table, or appro-
priate software, if we know that the probability of such a variable to lie between two numbers lα/2 and
hα/2 is α (as usual, common usage is to choose α= .9, .95, .99), we can say that

P

[

lα/2<
1

σ2

∑

(Xk− µ)
2
<hα/2

]

=α

or, defining S2=
1

n

∑

k=1
n

(Xk− µ)
2,

P

[

1

hα/2
<

σ2

nS2
<

1

lα/2

]

=α

which provides us with a confidence interval for σ2, with confidence level α

3.2 Unknown Mean

The more common situation is when we do not know the value of µ. In this case, it is natural to try to
mimic the calculation above, using X̄ , instead of µ. This implies a loss of information, of course, and it
also calls into play the following fact (the proof is easy, but we don’t really need it):

E

[

∑

k=1

n
(

Xk − X̄
)2

]

=(n− 1)σ2

(note that, instead, E
[

∑

k=1
n

(Xk − µ)
2
]

= nσ2). The preference of using a substitute (technically, this is

called an estimator), whose expected value is precisely what we are interested in (such an estimator is
called unbiased , and it is appreciated that its distribution is “centered”, in a sense, around the quantity we
are looking for), has led to the use of the “sample variance”

s2=
1

n− 1

∑

k=1

n
(

Xk− X̄
)2
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in this situation, instead of the, perhaps more natural, choice of

s̄ 2=
1

n

∑

k=1

n
(

Xk− X̄
)2

It turns out that
∑

k=1
n

(

Xk − X̄
)2

σ2 =
n s̄2

σ2 =
(n− 1)s2

σ2 has a χn−1
2 distribution. This can be used to estimate

the variance, and with these results in hand, we can mimic the previous section and observe that we can
use the same formula, which, after all, only involves the sum of the squares of the difference between the
data points and, respectively, the “true” mean and the sample mean. If you would rather point out the
standard deviation, you could simply use s̄ in place of S, but the traditional usage is to refer to s2

instead of S2, and n− 1 in place of n.

Remark 3.1. The choice between s and s̄ is only dictated by usage in our context—in most cases, it is

only the sum
∑

k=1
n (

Xk − X̄
)2

that really enters in the formula. One can investigate the properties of

these two quantities in terms of their effectiveness in providing an estimate for the true standard deviation
σ. This is a more theoretical pursuit, with somewhat limited practical implications. In any case, suffice it
to say that each of the two has its own theoretical justification (s, as indicated, is unbiased , and unbiased
estimators are well understood as far as their optimality, while s̄ is the maximum likelihood estimator for
σ, a feature that carries its own advantages). Incidentally, contrary to what you may read in some text-
books, the fact that s̄ is biased does not imply at all that it will always underestimate the true

variance: both s and s̄ are random, as they depend on the particular sample you are working with, and
they may over- or underestimate σ, with no possibility of knowing which way they are, since, by defini-
tion, we do not know σ. However, both are consistent , meaning that, ideally, if we could increase n

without limit, both would approach σ better and better, as n keeps growing.

3.3 Small Extensions

It is sometimes interesting to be able to estimate the difference between the means of two populations.
This is an easy application of the methods above, if the variances, are known or, if unknown, may be

assumed to be equal .

In fact, suppose the variances are known, equal to σ1
2, and σ2

2 and let the two sample means be X̄1,
and X̄2, and the sample size, respectively, n1, and n2. Then we know that X̄1 − X̄2 is (at least approxi-

mately) distributed as a normal variable, with mean the difference of the unknown means (which is what

we want to estimate), and variance the sum of the variances:
σ1
2

n1
+

σ2
2

n2
. Consequently,

X̄1− X̄2− (µ1− µ2)

σ1
2

n1
+

σ2
2

n2

√

can be assumed to be a standard normal variable, so that we can easily calculate a confidence interval for
the difference of the means, µ1− µ2.

If the variances are unknown (a much more common situation), but can be assumed to be equal
(which is a little less common), we can use the same idea used in the one-mean case, since we can use the
combined sample variances to construct a chi-square–distributed estimator for the common variance. Let’s
skip the details (available on request), but the conclusion is that if the two samples consist, respectively,
of n1, and n2 observations, the quantity

n1n2(n1+n2− 2)

n1+n2

√

X̄1− X̄2− (µ1− µ2)

n1 s1
2+n2 s2

2
√

will be distributed according to a tn1+n2−2 Student distribution.
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The most realistic situation, unknown, different, variances, is not as neat. The point is that while the
two expressions in this section do have the stated distributions (under the appropriate assumptions, of
course), the obvious “recipe”, consisting in substituting sk

2 for σk
2 in the expression used when variances are

known,
X̄1− X̄2− (µ1− µ2)

s1
2

n1
+

s2
2

n2

√

does not have a simple standard distribution (its distribution actually depends on the unknown vari-
ances). However,very roughly, it happens that pretending that its distribution was a Student distribution,
with the smallest of n1 − 1 and n2 − 1 as its number of degrees of freedom, does not, usually, lead to out-
rageous conclusions. Please, be aware of this not-so-white lie when following this common practice. Statis-
tics is always an approximate science, by definition (as mentioned, even flipping 1000 times heads would
not prove at a 100% level that the coin is not fair), so these transgressions are not as severe as they look:
we don’t have a real control on how good or bad our estimate will be, but, then, even in more clean situa-
tions, we would most likely still be invoking limit theorems without a clear indication of how good the
approximation will be.

3.4 A Related Problem: Estimating the Mean of An Exponential
Distribution

We mentioned that the distributions EXP
(

1

2

)

, and χ2
2 are identical, as well as the fact that summing two

variable with chi-squared distributions leads to a chi-square distributed variable with a number of degrees

of freedom that is the sum of the degrees of the addends. Hence, the sum of n EXP
(

1

2

)

variables has a

χ2n
2 distribution.
Now, suppose we have observed n copies of an exponential random variable of unknown parameter λ,

X1, X2, 	 , Xn. We consider the modified variables 2λXk. From what we saw when discussing the expo-

nential distribution, these are all distributed like EXP
(

1

2

)

, and their sum (which we might write as

2nλX̄ , in order to keep the privileged role of the arithmetic mean) is thus distributed as χ2n
2 . Fixing a

confidence level α, and determining the corresponding bounds for such a variable, say, lα/2, and hα/2, we
will have that

P
[

lα/2< 2nλX̄ <hα/2

]

=α

or

P

[

lα/2

2nX̄
<λ<

h
α/2

2nX̄

]

=α

as a confidence interval
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Chapter 4

A Really Short Discussion: What Does a
Confidence Interval Really Mean?

When looking at confidence intervals, one often uses the following language: “the true mean µ lies between
a and b with probability α”. For example, suppose we had a sample of 50 observations, X̄ = 2.5, and we
happened to know that σ2=4. Then, from our discussion,

X̄ − 1.96
σ

n
= 2.5− 1.96 ·

2

50
≈ 2.42< µ< 2.58≈ X̄ + 1.96

σ

n
with 95% probability.

The statement sounds odd: in theory at least, µ is a constant, a fixed number that we just happen not
to know. It is not random at all, so to say that “it lies between these two numbers with probability α may
sound awkward. On close examination, though, what is random is our sample, and hence the value of X̄ .
If we repeat the experiment, under the same conditions, we will get something different from 2.5 (hope-
fully not too different, but that’s not for us to decide). Hence, it is not the item in the middle of the
double inequality that is random, but the interval in which we are trying to constrain it.

Also, what does the “probability of 95%” mean exactly, in this context? In principle, according to the
classical interpretation (you can go back to the introduction to recall how this is a fairly delicate issue) it
means that, if we went and repeated the same experiment a zillion times, 95% of the time we would get
that our random intervals would be such that µ seems to lie between 2.42 and 2.58. This is not a terribly
useful interpretation, since we will not repeat the same experiment a zillion times: one time is enough.

A possible (no warranty offered) re-interpretation of the meaning of a “confidence level” could be the
following:

If we will continue measuring things with the same procedure, always under the proper con-
ditions, our estimates will turn out to be true about 95% of the time–we have to expect to
be wrong about 5% of the time
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Chapter 5

One Last Cautionary Comment

You will have noticed that all the discussion above refers to one random variable: we are observing one

quantity, and the mathematical machinery used works on probabilities related to this one quantity. In
real life, we actually have to deal with several quantities simultaneously. Almost always, these quantities
will not be independent of each other. A real-life example, from a dissertation discussed many years
ago, is of measurements of joint movements of the arm of several subjects (this was part of a study into
the design of prosthetic limbs). It goes without saying that the available movements of your elbow are not
independent of the movements of your wrist.

The problem here is that, to deal with these observations properly, one has to deal with all the

random variables as a unit. In other words, if you are observing five quantities, you cannot simply use
five disconnected estimates (using the tools we discussed above - in particular, what are called univariate

distributions): you have to estimate the five quantities as a whole - entering into multivariate statistics .
Time and content limitations prevent us to get into details here, but that doesn’t mean that you should
not be aware of this need. For example, the interval estimates produced in that dissertation were essen-
tially meaningless, since the researchers had completely ignored this issue (and also because the sample
size was abysmally small).
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