
Examples in Conditional Probabilities

1 False Positives and False Negatives (Conditional
Probabilities and Bayes’ Rule)

Recall that

P [A |B ] =
P [A ∩B]

P [B]

so that, since

P [A ∩B] = P [A |B ]P [B] = P [B |A ]P [A]

P [A |B ] =
P [B |A ]P [A]

P [B]

(Bayes’ Rule). While the formula may seem a curiosity, it reflects a basic method
of inquiry (“induction”)e . The following exercise is a typical example.

Suppose we are testing for a rare illness that is known to affect 2% of the
population. Suppose that we are using a test known to have a rate of 5% false
positives (people who are not ill test as ill), and 1% false negatives (people who
are ill do not test for the illness).

1. Suppose an individual tests positive: what is now the probability that
he/she is actually ill?

2. Suppose an individual tests negative: what is now the probability that
he/she is actually ill?

3. Suppose an individual who tested positive a first time is tested again with
the same procedure. If the result is positive, what are the odds now? And
what are they if the test is negative?

Hints: Give names to the various possibilities. For example we may define

• A =the individual is ill, and Ac =the individual is healthy

• E =the test is positive, and Ec =the test is negative

Note how we know P [A]. The “false positive” and “false negative” probabilities
are conditional probabilities (for example, a “false positive” corresponds to E,
given Ac). The requested probabilities in 1 and 2 can be found using Bayes’
Rule, since we want the probability of being ill, knowing the result of the test.
As for 3, it is the same question as 1 or 2, but we use the result from 1 in place
of the original P [A].
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Remark: examples of this type show why it is imperative to test more than
once for illnesses or other conditions, especially if the probability of being
affected is relatively low.

Solutions: The various possibilities (a patient being healthy or not, a test result-
ing positive - signaling illness - or negative) can be represented as a tree,
where each connecting line is labeled with the probability of the target
(the “offspring” node), given the source (the “parent” node), that is the
corresponding conditional probabilities:

The probability of each node is found by multiplying the numbers on the
lines (the “branches”) leading from the “root” (labeled “Population”) to the node.

1. We are told that

P [A] = 0.02, P [E |Ac ] = 0.05, P [Ec |A ] = 0.01

from which we can also find that

P [Ac] = 0.98, P [Ec |Ac ] = 0.95, P [E |A ] = 0.99

This allows us to compute

P [E] = P [E ∩ A] + P [E ∩ Ac] = P [E |A ]P [A] + P [E |Ac ]P [Ac] =

= 0.99 · 0.02 + 0.05 · 0.98 = 0.0688

Now, we can look for what we want, that is P [A |E ] (the probability of
a patient being ill, given that the test was positive). To this end, we use
Bayes’ Formula:

P [A |E ] =
P [E |A ]P [A]

P [E]

and simply plug in the numbers:

P [A |E ] =
0.99 · 0.02

0.0688
≈ 0.288
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This is way higher than 0.02, but is far from certainty – in fact, it is still
much more likely, even after a positive test, that our patient is healthy,
rather than ill!

2. This is similar: we are asking for

P [A |Ec ] =
P [Ec |A ]P [A]

P [Ec]
=

0.01 · 0.02

1− 0.0688
≈ 2 · 10−4

That’s really minimal...

3. If we take a second test on a patient that tested positive already, we cannot

use P [A |E ] = P [E|A ]P [A]
P [E] as a formula with P [A] = 0.02. We now know

that a first test was positive, hence, that the probability of illness is no
longer 2%, but rather 29%. Hence, we now have a new model. Without
changing notation, we will have (rounding the numbers for simplicity)

P [A] = 0.29, P [E |Ac ] = 0.05, P [Ec |A ] = 0.01

P [Ac] = 0.71, P [Ec |Ac ] = 0.95, P [E |A ] = 0.99

P [E] = P [E ∩ A] + P [E ∩ Ac] = P [E |A ]P [A] + P [E |Ac ]P [Ac] =

0.99 · 0.29 + 0.05 · 0.71 = 0.323

and

P [A |E ] =
P [E |A ]P [A]

P [E]
≈

0.99 · 0.29

0.323
≈ 0.88996

Now we are really scared!

2 Why the Naive “Law of Averages” Does Not Hold

Suppose you are repeatedly playing a “pure game of chance”, like a lottery, or
most casino games. Assume an “ideal” situation: the outcome of each game is
independent of all others, and they are all equal as far as the chance of winning.

Assume your chance of winning one game is p < 1 (in a lottery, p is extremely
small, in some casino games, like roulette, there are bets where p < 1

2 , but not
by much). Your probability of not winning one game is then q = 1− p. Define
the random variable, X = n if the first time you win is the nth. Since all games
are independent, the probability that X = n is the probability of losing the first
n − 1 games, and winning the nth, and is the product of the probabilities of
each of these events:

P [X = n] = pqn

It also follows that the probability of never winning in n attempts is

P [X > n] = qn (1)

since it equals the probability of losing the first n games.
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1. Since q < 1, show that the probability of never winning over n games is
very small if n is sufficiently large. For this purpose, you can compute an
example, e.g., q = 0.55 and n = 10. Try a few similar numbers.

2. This observation corresponds to the intuitive fact that “sooner or later
you have to win”. However, consider the following situation: you have
lost already n attempts (the following event is given: {X > n}). You are
asking now what is your probability of wining within the next m attempts
(that is you are looking at P [X ≤ n+m], knowing that {X > n}. Show
that this probability is precisely the same as that of winning within the
first m attempts (it is easier to how that the probability of not winning
in the next m attempts is the same as that of not winning in the first m

attempts). In other words, that having lost n times did not earn you any
brownie points: you are right where you were at the beginning...

Solutions:

1. From the formula (1), we have that

P [X > 10] = 0.5510 ≈ 0.0025

In general, qn will become very small very fast (it’s called “exponential
decay”, and it is indeed fast) if q < 1 .

2. We just write the formula for conditional probabilities (it is faster to work
with {X > n+m}):

P [X > n+m |X > n ] =
P [X > n+m,X > n]

P [X > n]

Now, if you lost n + m games, you certainly lost n, so the numerator is
actually equal to P [X > n+m]. We now refer to (1), to see that

P [X > n+m |X > n ] =
qn+m

qn
= qn+m−n = qm = P [X > m]

thanks to the peculiarities of the exponential function. We conclude that
losing n games at the start didn’t make it any more likely to win in the
next m games, than it was at the beginning. The folk statement of this
feature (it’s peculiar to the geometric and to the exponential distributions)
is that “the geometric distribution has no memory”.


