Parameter Estimation
       	 
     	 
   	 
 	 
 	 
   	 
 	 
 	 
   	 
 	 
 	 
   	 
 	 
    
    
  	Our first example of the use of Probability in a statistical problem
  	addresses the following problem:
    
    
 	 
   	 
     	 
        	We have observed a sample from a distribution that we have broadly
        	identified, up to one or more parameters. We want to use our
        	sample to narrow down the estimation of this (or these) parameters
        	as much as possible
     	 
   	 
 	 
    
    
  	Recall that a “sample” is, mathematically speaking, a
  	collection of independent identically distributed random observations.
    
    
  	For example, we might have reason to believe that the distribution at
  	work is exponential, and want to determine the value of its parameter
  	(or, equivalently, of its mean). Similarly, if the distribution can be
  	assumed to be normal, we might want to determine its mean, variance or
  	both. We will concentrate on one approach to this problem: Interval
  	Estimation. That is, we will look for an upper and lower bound for
  	the value of this parameter. Given the nature of our model, these bounds
  	cannot be 100% certain, except in trivial cases, so we will have to be
  	content for these bounds to have a high degree of likelihood, but no
  	certainty.
    
    
  	As a simple example, suppose we toss a coin a large number of times, in
  	order to determine whether it a fair coin or not. Assume also that the
  	coin is in fact fair, even if this fact is unknown to
  	us. The count of the number of heads follows a Binomial
  	Distribution, and so, even if the coin is fair, it is not
  	impossible to, say, observe only heads over all tosses. Though,
  	admittedly, this is a very unlikely situation, if it actually happened,
  	it would obviously suggest to us that the coin is badly unfair, and lead
  	us to estimate the probability of heads to be extremely close to 1. This
  	would be wrong, since the coin was fair, and we were simply victims of a
  	case of extreme bad luck, but we would not have any way to know, without
  	further information. Thus, in an experiment like this, there is a slim
  	probability of getting things very wrong, which forces us to admit that
  	any statement we may make can only be regarded, at best, as “most
  	likely correct, but there's always a chance it might be badly
  	off”.
    
    
  	In this Module, we will not cover every possible example nor even all
  	the ones you may encounter. We will concentrate on three common cases,
  	trying to focus on the general method, which could then be applied to
  	many other situations
    
	Chapter 1
Estimation Model
    
  	We assume we have repeated observations of a quantity. As examples, we
  	may consider
    
    
 	 
    	repeated measurements of a physical quantity (e.g., the mass of an
    	object, or the voltage produced by an electrical generator, etc.)
 	 
 	 
    	repeated sampling of a large population (e.g., polling the American
    	public)
 	 
 	 
    	repeated lifetime tests of a product (e.g., repeated observations of
    	the time to failure of machines produced by a given assembly line)
 	 
    
    
  	In all these cases we construct a mathematical model of our experiment
  	as follows.
    
    
 	 
    	We posit an abstract sample space Ω
 	 
 	 
    	Each observation we make is considered as the observation of a random
    	variable Xi,i=1,2,…,n
    	(where n is the number of observations),
    	defined on this space.
 	 
 	 
    	In general, we are trying to recover the joint distribution of
    	these random variables
 	 
 	 
    	As a general problem this is usually too ambitious, hence, we assume
    	that our experiment was set up in a way that allows us to make several
    	drastic simplifications, as follows.
 	 
    
    
  	The following additional assumptions are not always appropriate,
  	although they are most common. In particular, some famous failures of
  	statistical science can be ascribed to their arbitrary application to
  	situations that did not warrant it.
    
    
 	 
    	we assume that the random variables Xi
    	are independent and identically distributed.
    	Independence is a delicate point, as we can all imagine, but the
    	"identical" in the second requirement should also be
    	carefully considered.
 	 
 	 
    	We can assume that the common distribution of the variables is known,
    	up to the determination of one or more parameters. This can be a
    	pretty hefty assumption, that may be justified by an analysis of the
    	features of your experiment (e.g., it is presumably reasonable to
    	assume that the observation of a physical quantity is normally
    	distributed, as its fluctuations are assumed to be caused by many
    	small and independent error sources, so that the Central Limit Theorem
    	can be safely applied).
 	 
 	 
    	If we cannot be too sure of the underlying distribution, we can still
    	try to estimate some parameter, for example its expected value,
    	because it seems reasonable, for example, given the size of the
    	sample, and, possibly, some qualitative assumptions on the
    	distribution (e.g., symmetry around the mean, existence of the
    	variance) that it can be assumed to have an
    	approximate normal distribution.
 	 
    
    
  	With these assumptions in hand, we now proceed to construct a function
  	of the observations (technically called a "statistic", with a
  	not too felicitous choice of terminology) that can tell us something
  	about the parameter(s) we are trying to determine. Typically, we will be
  	looking at a combination of the observations that has a known
  	distribution (at least, approximately), and is more or less centered
  	around the parameter in question.Chapter
  	2
Estimating the Mean of a Normal Distribution
    
    
  	This is a very common case, and, thanks to the Central Limit Theorem,
  	applies even to situations where the underlying distribution is not
  	really Normal. In fact, if the sample is “large enough”, we
  	know from that theorem that the sample average
    
    
 	 
   	 
      	X‾=1n∑k=1nXk
     	 
     	 
   	 
 	 
    
    
  	will be approximately distributed as a Normal Random Variable, with mean
  	μ=E[Xk], and variance σ2=Var[Xk]n
  	(all observation have the same expected value, and the same variance,
  	since they all have the same distribution). As we discussed in our
  	second Probability Chapter, how large is “large enough”
  	depends on the features of the distribution of our Random Variables.
  	Thus, if the distribution was very skewed, the sample would have to be
  	very large indeed for the theorem to apply. On the other hand a fairly
  	symmetric distribution will let the theorem kick in very early.
    
	2.1Estimating the Mean when the Variance is
	Known
    
  	Suppose we know the value of Var[Xk],
  	and want to estimate E[Xk]. In many cases this is an artificial
  	example, since this is a somewhat unlikely situation, but it applies to
  	at least two important cases:
    
    
 	 
    	Our observations are measurements obtained using an instrument with a
    	known (as determined by the manufacturer) variance in its readings
 	 
 	 
    	We are observing a sample of Bernoulli Random Variables (and their
    	parameter p is not extremely close to 0
    	or 1)
 	 
    
    
  	In case 1, we may be measuring, for example, the voltage produced by a
  	generator, using a voltmeter whose manufacturer has assured us that its
  	readings are normally distributed around the “true value”,
  	with a variance of v. This is possible
  	because another common procedure is to estimate the variance of a Normal
  	Random Variable, when the mean is known (as is the case when we measure
  	a standard source of known “true value”), or even when the
  	mean is unknown, as we will quickly sketch at the end of this module.
  	Looking at our sample average, we can now say that it too will be
  	normal, with mean equal to the unknown true value, and variance vn.
    
    
  	In case 2, the sum of our observations is going to have a Binomial
  	Distribution of mean np,
  	and variance np(1-p).
  	Of course, since we are looking for p, we
  	don't really know the variance. However, we may note that 0⩽p(1-p)⩽14
  	(try studying the graph of the function x(1-x)=x-x2,
  	when 0⩽x⩽1).
  	Hence, the variance cannot be larger than 14,
  	and if we use this value, we are just making a worst-case estimate which
  	is going to more or less pessimistic, but definitely not wrong on the
  	optimistic side. In this case, we will work under the assumption that
  	our sample mean is (approximately) normal, with unknown mean p, and variance 14n.
    
    
  	Remark 2.1. The method of assuming a “worst case
  	scenario” of variance 14
  	for a binomial distribution that we approximate with the normal is, I
  	believe, the best: the result is “pessimistic” but
  	systematically on the same side. In other words, you know that the
  	confidence level you are stating is always a bit too low. A
  	popular alternative, is to use the sample mean (rebranded as p^, meaning your
  	estimate for the true value of p)
  	in the formula (that is, use p^(1-p^) in place of σ
  	in the formula below, rather than 14).
  	This will obviously give you a narrower interval, at the price of not
  	knowing whether you are being pessimistic or optimistic in your
  	assessment of the confidence level. You can argue that the whole
  	procedure is approximate anyway (especially when the sample size is
  	small), so a little extra fuzziness does not really change anything.
    
    
  	In either case, and any other case where we may assume a known variance
  	σ2, an unknown mean
  	μ, and observed a sample mean X‾
  	of n observations, we will be able to say
  	that X‾ has
  	a normal distribution, with mean μ, and
  	variance σ2n,
  	hence standard deviation σn.
  	This information allows us to assign a probability to any event of the
  	form {a⩽X‾-μ⩽b}, and thus assign a probability to a statement
  	like “the true value μ is within
  	this given distance from our observed sample mean, with this degree of
  	probability”. The “degree of probability” is ours to
  	choose, and is usually called the “confidence level” of our
  	estimate. The usual procedure is to choose a reasonable confidence
  	level, and adjust a and b
  	consequently. Usually, these are chosen so as to determine a symmetric
  	interval around X‾,
  	that is, b>0,a=-b,
  	with the given confidence value. Since Y=X‾-μ
  	is now a normal variable with zero mean and variance σ2n,
  	we can use our software to choose an interval with a desired confidence
  	level.
    
    
  	We can also use a table, rather than software, and obtain the same
  	result “by hand”. From what we know about the normal
  	distribution, the Random Variable
    
    
  	Z=X‾-μσ/n=nX‾-μσ
    
    
  	has a Standard Normal Distribution. The tables found in every
  	probability or statistics book, as well as everywhere on the World Wide
  	Web, can be used to determine a symmetric interval around 0 where Z will fall with an assigned probability. For
  	example, you can see that
    
    
  	P[-1.96<Z<1.96]≈0.95
    
    
  	Thus, we may say that with approximately 95% confidence, we may state
  	that
    
    
 	 
   	 
      	-1.96<nX‾-μσ<1.96
     	 
     	 
   	 
   	 
      	-1.96σn<X‾-μ<1.96σn
     	 
     	 
   	 
 	 
    
    
  	In common usage, confidence levels are often chosen as 0.9, 0.95, or
  	0.99 (the corresponding approximate numbers we read off the tables are,
  	respectively, 1.65, 1.96, 2.58 ). These choices are due, on the one
  	hand, to everybody's love for round numbers, and, on the other hand, to
  	Fisher's choices, often dictated by very narrow convenience factors: you
  	are free to choose any level. Clearly, as we lower the confidence level,
  	we get narrower estimates (but we have a higher probability of being
  	wrong), and, in reverse, by allowing for estimates that are not as
  	tight, we may gain a higher confidence level.
    
    
 	 
    	Remark 2.2. When applying this method to a 2-outcome
    	experiment, i.e., using the normal distribution in place of the
    	theoretically correct binomial distribution, you will read about
    	things like “continuity correction”, meaning that you are
    	worried by the fact that your random variable should be an integer,
    	but your approximation takes any real value, and hence decide
    	to approximate, say, P[X<k+1], for the binomial variable X, by P[X∼<k+12], for your normal approximation X∼ to X. See the discussion in the file on
    	“Normal Approximation to the Binomial” in the Online Stat
    	book - you will notice how the examples are for really small values of
    	n. While this is certainly acceptable, it
    	is one more example of splitting hairs on a side issue. If this
    	correction makes a real difference, chances are that your
    	approximation is not too good in the first place. If you are in real
    	Central Limit Theorem territory, the correction should be
    	insignificant—if it isn't, there may be
    	much more important discrepancies between your approximation and the
    	“exact” model. Note that, although we won't go there, it
    	is perfectly feasible to do exact interval estimation, without
    	recourse to the CLT, using the binomial distribution. It is more
    	cumbersome, and less automated, and, for these reasons, is almost
    	never done, but if we feel the need to split hairs, we might have to
    	bite the bullet.
 	 
 	 
    	Of course, the discussion above applies to any discrete distribution
    	that is being approximated through the CLT.
 	 
    
	2.2Estimating The Mean When the Variance is
	Unknown
    
  	This is a more common situation. Unfortunately, the usual tools are
  	limited to the case when the underlying distribution is really normal
  	(as opposed to the previous case, the Central Limit Theorem does not
  	enter the picture as early). Still, the following method is the one
  	people will almost always use, and there has been research proving that
  	the outcome is not that off the wall, even when the underlying
  	distribution is not normal, provided it is symmetric around the mean,
  	and not excessively spread out.
    
    
 	 
    	Remark 2.3. The underlying fact at work in this context is
    	that, as n increases, the distribution of
    	the sample mean approaches the normal distribution, and its
    	value approaches the true expected value faster than the corresponding
    	fact for s2 (which
    	does approach σ2,
    	the true variance, but at a slower rate). Hence, in general,
    	expression involving more of the sample than X‾n
    	will not behave quite like they would if the underlying distribution
    	was really normal.
 	 
 	 
    	Still, as we already mentioned, the shape of the underlying
    	distribution makes a big difference in speed. Hence, you will notice
    	that the conditions for reasonable applicability of the Student
    	distribution are precisely the same that ensure that the Central Limit
    	Theorem kick in early.
 	 
    
    
  	The method is based on the fact (discussed in the next chapter), that we
  	can use the “sample standard deviation” to get a grasp on
  	the unknown variance of a normal distribution (we discuss the curious
  	factor of 1n-1
  	used in the sample variance in the next chapter). It turns out
  	that, for a sample of n independent
  	normally distributed random variables,
    
    
  	Yn-1=∑k=1n(Xk-X‾n)2σ2=(n-1)s2σ2
    
    
  	has a χn-12
  	distribution. Now, Z=X‾n-μσ/n
  	is a standard normal variable. Hence, the quotient
    
    
  	ZYn-1n-1=nX‾n-μσ⋅σs=nX‾-μs
    
    
  	has a tn-1
  	distribution. Note the formal similarity with the quantity used when the
  	variance is known: we exchange the (unknown) variance for the sample
  	variance, and switch to a Student distribution, but the formula is very
  	similar.
    
    
  	Looking up tables for the t distribution
  	with the appropriate number of degrees of freedom, or simply using our
  	spreadsheet, we can then work as in the previous section.
    
	Chapter 3
Estimating the Variance of A Normal Variable,
	and a Bonus Consequence
	3.1Estimating the Variance When the Mean Is
	Known
    
  	Again, this is a bit of an artificial situation, but it applies, for
  	example when we are calibrating an instrument by measuring a well known
  	quantity (for example, when testing a length measuring instrument
  	against a Bureau of Standard sanctioned length), in order to evaluate
  	its incertitude.
    
    
  	The relevant observation here would be that the variables
    
    
  	Zk=Xk-μσ
    
    
  	are standard normal variables, so that ∑k=1nZk2
  	has a χn2
  	distribution. Hence, using a table, or appropriate software, if we know
  	that the probability of such a variable to lie between two numbers lα/2
  	and hα/2
  	is α (as usual, common usage is to choose
  	α=.9,.95,.99),
  	we can say that
    
    
  	P[lα/2<1σ2∑(Xk-μ)2<hα/2]=α
    
    
  	or, defining S2=1n∑k=1n(Xk-μ)2,
    
    
  	P[1hα/2<σ2nS2<1lα/2]=α
    
    
  	which provides us with a confidence interval for σ2,
  	with confidence level α
    
	3.2Unknown Mean
    
  	The more common situation is when we do not know the value of μ. In this case, it is natural to try to mimic
  	the calculation above, using X‾,
  	instead of μ. This implies a loss of
  	information, of course, and it also calls into play the following fact
  	(the proof is easy, but we don't really need it):
    
    
  	E[∑k=1n(Xk-X‾)2]=(n-1)σ2
    
    
  	(note that, instead, E[∑k=1n(Xk-μ)2]=nσ2).
  	The preference of using a substitute (technically, this is called an
  	estimator), whose expected value is precisely what we are
  	interested in (such an estimator is called unbiased, and it is
  	appreciated that its distribution is “centered”, in a sense,
  	around the quantity we are looking for), has led to the use of the
  	“sample variance”
    
    
  	s2=1n-1∑k=1n(Xk-X‾)2
    
    
  	in this situation, instead of the, perhaps more natural, choice of
    
    
  	s‾2=1n∑k=1n(Xk-X‾)2
    
    
  	It turns out that ∑k=1n(Xk-X‾)2σ2=ns‾2σ2=(n-1)s2σ2
  	has a χn-12
  	distribution. This can be used to estimate the variance, and with these
  	results in hand, we can mimic the previous section and observe that we
  	can use the same formula, which, after all, only involves the sum of the
  	squares of the difference between the data points and, respectively, the
  	“true” mean and the sample mean. If you would rather point
  	out the standard deviation, you could simply use s‾
  	in place of S, but the traditional usage is
  	to refer to s2
  	instead of S2, and
  	n-1 in place
  	of n.
    
    
  	Remark 3.1. The choice between s and
  	s‾ is only
  	dictated by usage in our context—in most
  	cases, it is only the sum ∑k=1n(Xk-X‾)2 that really enters in
  	the formula. One can investigate the properties of these two quantities
  	in terms of their effectiveness in providing an estimate for the true
  	standard deviation σ. This is a more
  	theoretical pursuit, with somewhat limited practical implications. In
  	any case, suffice it to say that each of the two has its own theoretical
  	justification (s, as indicated, is
  	unbiased, and unbiased estimators are well understood as far as
  	their optimality, while s‾
  	is the maximum likelihood estimator for σ,
  	a feature that carries its own advantages). Incidentally, contrary to
  	what you may read in some textbooks, the fact that s‾
  	is biased does not imply at all that it will always
  	underestimate the true variance: both s
  	and s‾ are
  	random, as they depend on the particular sample you are working with,
  	and they may over- or underestimate σ,
  	with no possibility of knowing which way they are, since, by definition,
  	we do not know σ. However, both are
  	consistent, meaning that, ideally, if we could increase n without limit, both would approach σ
  	better and better, as n keeps growing.
    
	3.3Small Extensions
    
  	It is sometimes interesting to be able to estimate the
  	difference between the means of two populations. This is an
  	easy application of the methods above, if the variances, are known
  	or, if unknown, may be assumed to be equal.
    
    
  	In fact, suppose the variances are known, equal to σ12,
  	and σ22
  	and let the two sample means be X‾1,
  	and X‾2,
  	and the sample size, respectively, n1,
  	and n2. Then we know
  	that X‾1-X‾2
  	is (at least approximately) distributed as a normal variable, with mean
  	the difference of the unknown means (which is what we want to estimate),
  	and variance the sum of the variances: σ12n1+σ22n2.
  	Consequently,
    
    
  	X‾1-X‾2-(μ1-μ2)σ12n1+σ22n2
    
    
  	can be assumed to be a standard normal variable, so that we can easily
  	calculate a confidence interval for the difference of the means, μ1-μ2.
    
    
  	If the variances are unknown (a much more common situation), but can be
  	assumed to be equal (which is a little less common), we can use the same
  	idea used in the one-mean case, since we can use the combined sample
  	variances to construct a chi-square–distributed estimator for the
  	common variance. Let's skip the details (available on request), but the
  	conclusion is that if the two samples consist, respectively, of n1, and n2
  	observations,  the quantity
    
    
  	n1n2(n1+n2-2)n1+n2X‾1-X‾2-(μ1-μ2)n1s12+n2s22
    
    
  	will be distributed according to a tn1+n2-2
  	Student distribution.
    
    
  	The most realistic situation, unknown, different, variances, is not as
  	neat. The point is that while the two expressions in this section do
  	have the stated distributions (under the appropriate assumptions, of
  	course), the obvious “recipe”, consisting in substituting
  	sk2
  	for σk2
  	in the expression used when variances are known,
    
    
  	X‾1-X‾2-(μ1-μ2)s12n1+s22n2
    
    
  	does not have a simple standard distribution (its distribution actually
  	depends on the unknown variances). However,very roughly, it happens that
  	pretending that its distribution was a Student distribution,
  	with the smallest of n1-1
  	and n2-1
  	as its number of degrees of freedom, does not, usually, lead to
  	outrageous conclusions. Please, be aware of this not-so-white lie when
  	following this common practice. Statistics is always an approximate
  	science, by definition (as mentioned, even flipping 1000 times heads
  	would not prove at a 100% level that the coin is not fair), so these
  	transgressions are not as severe as they look: we don't have a real
  	control on how good or bad our estimate will be, but, then, even in more
  	clean situations, we would most likely still be invoking limit theorems
  	without a clear indication of how good the approximation will be.
    
    
 	 
    
	3.4A Related Problem: Estimating the Mean of
	An Exponential Distribution
    
  	We mentioned that the distributions EXP(12),
  	and χ22
  	are identical, as well as the fact that summing two variable with
  	chi-squared distributions leads to a chi-square distributed variable
  	with a number of degrees of freedom that is the sum of the degrees of
  	the addends. Hence, the sum of n EXP(12) variables has a χ2n2
  	distribution.
    
    
  	Now, suppose we have observed n copies of
  	an exponential random variable of unknown parameter λ,
  	X1,X2,…,Xn.
  	We consider the modified variables 2λXk.
  	From what we saw when discussing the exponential distribution, these are
  	all distributed like EXP(12), and their sum (which we might write
  	as 2nλX‾,
  	in order to keep the privileged role of the arithmetic mean) is thus
  	distributed as χ2n2.
  	Fixing a confidence level α, and
  	determining the corresponding bounds for such a variable, say, lα/2,
  	and hα/2,
  	we will have that
    
    
  	P[lα/2<2nλX‾<hα/2]=α
    
    
  	or
    
    
  	P[lα/22nX‾<λ<hα/22nX‾]=α
    
    
  	as a confidence interval
    
	Chapter 4
A Really Short Discussion: What Does a
	Confidence Interval Really Mean?
    
  	When looking at confidence intervals, one often uses the following
  	language: “the true mean μ lies
  	between a and b
  	with probability α”. For example,
  	suppose we had a sample of 50 observations, X‾=2.5,
  	and we happened to know that σ2=4.
  	Then, from our discussion,
    
    
  	X‾-1.96σn=2.5-1.96⋅250≈2.42<μ<2.58≈X‾+1.96σn
    
    
  	with 95% probability.
    
    
  	The statement sounds odd: in theory at least, μ
  	is a constant, a fixed number that we just happen not to know. It is not
  	random at all, so to say that “it lies between these two numbers
  	with probability α may sound awkward. On
  	close examination, though, what is random is our sample, and hence the
  	value of X‾.
  	If we repeat the experiment, under the same conditions, we will  get
  	something different from 2.5 (hopefully not too different, but that's
  	not for us to decide). Hence, it is not the item in the middle of the
  	double inequality that is random, but the interval in which we are
  	trying to constrain it.
    
    
  	Also, what does the “probability of 95%” mean exactly, in
  	this context? In principle, according to the classical interpretation
  	(you can go back to the introduction to recall how this is a fairly
  	delicate issue) it means that, if we went and repeated the same
  	experiment a zillion times, 95% of the time we would get that our random
  	intervals would be such that μ seems to
  	lie between 2.42 and 2.58. This is not a terribly useful interpretation,
  	since we will not repeat the same experiment a zillion times: one time
  	is enough.
    
    
  	A possible (no warranty offered) re-interpretation of the
  	meaning of a “confidence level” could be the following:
    
    
 	 
   	 
     	 
       	 
          	If we will continue measuring things with the same procedure,
          	always under the proper conditions, our estimates will turn out
          	to be true about 95% of the time–we have to expect to be
          	wrong about 5% of the time
       	 
     	 
   	 
 	 
    
	Chapter 5
One Last Cautionary Comment
    
  	You will have noticed that all the discussion above refers to one
  	random variable: we are observing one quantity,
  	and the mathematical machinery used works on probabilities related to
  	this one quantity. In real life, we actually have to deal with several
  	quantities simultaneously. Almost always, these quantities will
  	not be independent of each other. A real-life example, from a
  	dissertation discussed many years ago, is of measurements of joint
  	movements of the arm of several subjects (this was part of a study into
  	the design of prosthetic limbs). It goes without saying that the
  	available movements of your elbow are not independent of the movements
  	of your wrist.
    
    
  	The problem here is that, to deal with these observations properly,
  	one has to deal with all the random variables as a
  	unit. In other words, if you are observing five quantities, you
  	cannot simply use five disconnected estimates (using the tools we
  	discussed above - in particular, what are called univariate
  	distributions): you have to estimate the five quantities as a
  	whole - entering into multivariate statistics. Time and content
  	limitations prevent us to get into details here, but that doesn't mean
  	that you should not be aware of this need. For example, the interval
  	estimates produced in that dissertation were essentially meaningless,
  	since the researchers had completely ignored this issue (and also
  	because the sample size was abysmally small). An even more striking
  	example is given, again, by the financial crash of 2007. Among many
  	shortcoming of the mathematical models that were governing the tradings
  	of banks and funds, there was a lack of data concerning the connections
  	between different assets. What precisely was lacking was statistical
  	data that could provide information of how the default of some loans
  	would or would not affect the likelihood of other loans defaulting. The
  	lack of data was papered over by a purely theoretical argument, heavily
  	based on normality assumptions, that turned out to be inappropriate. As
  	we all learned, failure to base the models on a sound analysis of the
  	joint behavior of the assets in play was a very costly mistake.
	

