How To Apply Statistical Techniques
    
  	We have had a quick look at the theory behind statistical sampling, and,
  	in general, how statistical tools might help in the measurement of
  	factors. However, the translation from theory to practice is very far
  	from trivial. In fact, the so-called Design of Experiments is a
  	full fledged research area, and the abundance of examples where the
  	practice did not quite live up to theoretical standards proves how
  	difficult this can be.
    
    
  	There are general classifications for various types of statistical
  	applications, and most of those you will find mentioned in textbooks
  	refer to variations of polling. We should not forget the important
  	applications from areas like quality control, survival analysis, or
  	scientific measurement.
    
    
  	In an introductory course, we can only sketch some general ideas
  	concerning this complex topic, trying to convey a feeling for the
  	considerable challenges that have to be met. Actual implementation of a
  	statistical study requires a much deeper study of all the elements
  	involved.
    
    
  	In this quick overview we will not address issues related to Census
  	taking. By definition, a census aims at collecting complete information
  	on a given population. This is trivial for really small populations
  	(e.g., taking a census in a classroom), and poses all sorts of very
  	peculiar statistical issues when performed on the scale of, say, a
  	national census (as well-known examples, you might think of issues like
  	undercounting of specific groups, or the care needed to cross-reference
  	collected data). Given that this is a highly specialized area, we will
  	leave it for dedicated studies, and concentrate on common statistical
  	activities.
    
	Theory and Application of Sampling
    
  	Recall what the theory behind sampling theory is: we have a number of
  	observations that are supposed to observations of independent and
  	identically distributed random variables. That implies that
  	different numbers are the result of completely random fluctuations, and
  	not due to any bias or connection between the different outcomes.
  	Additionally, we are also assuming that the distribution we are talking
  	about is indeed the one we are interested in studying.
    
    
  	To see that it is not trivial to produce an experiment matching these
  	requirements, think of a "simple" problem like polling the
  	American population about, say, their favorite ice cream flavor. We are
  	interested in the proportion of the whole population, and that
  	means that the small sample we will actually interview should be
  	"representative" of the whole population: the likelihood of
  	interviewing a strawberry lover should be the same from the sample as
  	from the population. In the theoretical setup, we may think of the
  	population consisting of shy of 310 million colored balls (each flavor
  	corresponding to a color) in a big bowl, with a blindfolded child
  	picking one ball at a time, with the bowl thoroughly turned so the balls
  	are thoroughly mixed before each extraction. This ideal setup is the
  	model for the gold standard of sampling: simple random
  	sampling.
    
    
  	That's not how the respondents are actually going to be picked in
  	reality, and it is not quite obvious how to construct a decent
  	approximation to that abstract model.
    
    
  	First of all, it is very easy to do this completely wrong. Such bad
  	practices are so common that some have their own names. Typical examples
  	are convenience sampling (for example, you go somewhere
  	convenient, and interview the people you meet: typically the result of
  	your "poll" has no significance at all, since you picked a
  	specific type of people - those who go where you went - with very little
  	randomness, and to assume that the responses are independent is also
  	quite stretch), and voluntary response sampling, as in phone-in
  	or Internet polls (people who respond chose to respond, and were not
  	chosen "at random" at all, so their responses reflect their
  	responses only, and nothing can be inferred about a larger population)
    
    
  	Traditionally, a widespread method was to pick names at random from
  	phone books. It was not perfect (for example, ideally, we need a
  	nation-wide phone book, and you are excluding people who do not have a
  	phone), and it is less and less so, as a growing number of Americans opt
  	to rely on cell phone service only. The typical method used to go in
  	steps:
    
    
 	 
    	pick a telephone exchange at random
 	 
 	 
    	add random digits to the exchange to produce a phone number
 	 
 	 
    	pick one adult from each household you reach this way
 	 
    
    
  	There are complex issues behind each of these steps (each exchange has
  	to be weighed by the population that uses it, random digits produce non
  	existent or illegal phone numbers, you may not have the choice of
  	picking the adult at random: you may have to pick whoever happens to be
  	at home, and more), and the design of such a procedure to make it at
  	least reasonably close to a true random sampling is completely non
  	trivial. Even if a good design has been implemented, the issues of
  	under-coverage (people who have no land line, homeless people,
  	students in college dormitories, prison inmates, and so on) are
  	important. Independence between respondents is another possible problem,
  	but the, biggest problem is posed by people who are selected, but, for
  	some reason, do not respond. Depending on what we are actually asking,
  	this can be a big source of bias. Polling services keep devising ways to
  	"correct" for this problem, but, almost always, these ways are
  	kept as trade secrets, and not made public. This, as in all
  	"closed" situations, makes it impossible to subject the
  	methodology to peer review, and thus you have to trust the small team
  	that came up with the idea for it to be effective, without the
  	validation that proper scientific review guarantees.
    
    
  	As we can see, it is not that surprising if a poll fails to predict an
  	election correctly, but think of the many more surveys that have no
  	benchmark to be checked against, as a pre-election poll has.
    
	How to pick anything at random?
    
  	Currently, the most convenient way to “pick something at
  	random” out of a list of candidates, is to use a random number
  	generator program (RNG) on a computer. As discussed in the Special
  	Topics section on Simulation, computers do not really come up
  	with truly random numbers, but, without addressing this quite difficult
  	issue, it turns out that, for all intent and purposes,
  	pretending that they are “truly” random has proved
  	to be a viable attitude.
    
    
  	What a RNG will provide you is a number between 0 and 1 with the
  	probability of it falling between a and
  	b, with 0⩽a<b⩽1,
  	being (theoretically) b-a.
  	Your spreadsheet produces such a number through the function
  	rand() (a similar function is part of the standard C
  	libraries, and for most other computing languages). An alternate
  	possibility is the function randbetween(x,y), where x and y are two real
  	numbers: it produces a “random integer”
  	between x and y
  	(here, “random” means that, theoretically, all the
  	qualifying numbers have equal likelihood to be chosen).
    
    
  	In a simple random sampling experiment you would list all candidates to
  	be chosen, and, since each should have the same probability of being
  	chosen, you could code each with a number, say, from 1
  	to n, and have randbetween(0.5,
  	n+1/2) choose one. Alternatively, you could divide the interval
  	[0,1]
  	in n equal subintervals of length 1n, connect each
  	candidate with one such interval, and choose the one corresponding to
  	the interval where the output of rand() falls.
    
    
  	Note that this ideal situation is not what you would face in most
  	practical cases. Even the phone sampling strategy mentioned above does
  	not fit this model, since you cannot assign the same probability to all
  	telephone exchanges - typical exchanges in Manhattan include a lot more
  	people than typical exchanges in Wyoming.
    
	Variations to the Simple Random Sampling Method
    
  	To mitigate some of the difficulties in setting up a random sampling
  	that matches the theoretical ideal, variations have been devised, but
  	they lead to new difficulties, some of them very serious. Here are a few
  	examples.
    
	Stratified Sampling
    
  	Ideally, the population is divided in strata, that is subgroups
  	that share some feature (e.g., by geography, by political orientation,
  	by gender, ...), and each subgroup is sampled randomly. The results are
  	combined, by weighing each stratum by its numerosity in the total
  	population. In theory, this should allow one to build a
  	representative sample of the population with fewer individuals.
  	As you can easily see, to produce a proper stratified sampling procedure
  	requires a lot of difficult work, as it necessitates to be able to
  	classify, for example, all Americans according to the strata we
  	selected, and to properly assess the number of individuals in each
  	stratum, as well as correctly assigning individuals. In a way, the
  	telephone strategy sketched above is a version of stratified sampling.
    
    
  	This is a (generically) recommended procedure, but you should not
  	underestimate the problems that have to be solved to make it effective.
  	Still, if conducted properly, it is a legitimate implementation of the
  	sampling paradigm. That is not the case, to varying degrees, of other
  	popular methods, as exemplified in the following.
    
	Systematic Sampling
    
  	This is "simple" method that can easily produce very biased
  	samples, without you even being aware of it. The idea is to choose an
  	integer number, let's call it k, then pick one individual at
  	random, and proceed to poll every further k-th individual.
  	Supposedly, this method would not require you to know too many details
  	of the population you are sampling. As an example, some textbooks will
  	suggest this as a good way to test a production line, in quality
  	control. It is not difficult to figure out a situation where a glitch in
  	the production occurs periodically. A systematic sampling approach, in
  	this case, could either miss the problem completely, or blow it out of
  	proportion.
    
    
  	The problem is that the randomness of this method is shifted from the
  	random selection of each individual, to the selection of the sequence in
  	which you consider individuals, as this determines who the
  	k-th, 2k-th, 3k-th, and so on will be.
  	Setting up a true "random sequencing" is much harder than
  	successively extracting "random numbers". In fact, it is the
  	connected to the difficult problem of generating "good"
  	"random" sequences in a computer (an extremely challenging
  	problem in computer science). Incidentally, in theory, if the sequence
  	you are sampling was really random (this ensuring that the method does
  	not introduce bias), choosing k=1
  	would be just as effective as any other choice.
    
	Cluster Sampling
    
  	This could be applied in a quality control setting, where, instead of
  	sampling n individual items, all items from a random selection
  	of batches (as in cans organized in 12-packs) are tested. While this
  	method seems to make it easy to sample a sufficiently large number of
  	items with much less effort, the gain may be completely illusory. Since
  	one could well suspect that items in each batch are not independent (for
  	example, production problems may affect all cans in a specific batch),
  	the size of the sample is not really determined by the number of
  	individuals tested, but rather by the number of batches.
    
	Convenience Sampling
    
  	This method should not even be considered "sampling". It
  	consists in picking individuals that happen to be found. For example,
  	"sampling" the population of a city by going to a mall and
  	polling visitors, or "sampling" the student population of a
  	school by polling your class. In a way, you can put opt-in surveys, like
  	Internet polls, as convenience sampling too. In any case, results
  	obtained by this method are completely worthless and represent only the
  	specific group that was polled.
    
	Related Experimental Designs
    
  	There are other observation methods that do not aim at producing a
  	random sample, in the sense we have discussed, and the techniques used
  	on these are not necessarily the same as in a sampling experiment. Here
  	are a few common examples.
    
	Controlled Experiments
    
  	We discuss them in the next section.
    
	Acceptance Sampling
    
  	Actually, this is not a procedure that fits into this lineup. It is a
  	rough and tumble approach to quality control. Here is a prototypical
  	example:
    
    
  	You receive supplies in batches of N items. You are not willing
  	to tolerate batches that have p = k/N
  	defective items, or more. Since checking for defective items is
  	destructive or, at the least, expensive and unwieldy, you
  	"sample" n items and reject the batch if one or more
  	sampled items are defective.
    
    
  	To make sense of this procedure, you have to choose n in terms
  	of your choice of k and N. You can quickly realize
  	that this is a standard problem in probability, but does not tie in well
  	with "standard" statistical procedures. Specifically, here is
  	how you would choose n, given N, and k. As an
  	example, consider N = 1000, k = 10, (p =
  	0.01). This is a binomial experiment: assume you are willing to live
  	with a q chance of accepting a batch that you should refuse
  	(let's take q = 0.05 - 5% - as an example). You need to choose
  	n such that the probability of that many items not being
  	defective, even if the overall percentage of bad items is p
  	(e.g., 1%) or higher, should be no greater than q (5%). Since
  	the probability of an item being good is 1-p
  	(or less), the probability of n items being
  	good, assuming that they are independent - a non trivial
  	assumption here, is no more than (1-p)n.
  	Now, we need (1-p)n⩽q,
  	or n⁡log(1-p)⩽log⁡q,
  	or (recall that probabilities are less than 1, hence logarithms are
  	negative, and we are dividing by a negative number),
    
    
  	n⩾log⁡qlog⁡(1-p)
    
    
  	(It does not matter what base you are using for the logarithms). For our
  	example, q=0.05,
  	p=.99,
  	hence,
    
    
  	n⩾298.07
    
    
  	which is quite large. To make this method cost effective, we would have
  	to either tolerate a lot more defective items, and/or be resigned to not
  	rejecting many more “bad” shipments. Regardless of this
  	uncomfortable number, you can appreciate how this procedure is not part
  	of the “sampling” list we just went over.
    
	Experiments
    
  	Even though the basic theory underlying "experiments" (as
  	opposed to "observational studies") is the same, the practice
  	is somewhat different, and is fraught with different problems. An
  	experiment consists in actively subjecting individuals to some kind of
  	procedure, and observing the result. In an observational study, on the
  	other hand, individuals are passively observed. For example in a quality
  	control experiment, we might take a production sample and subject the
  	items in the sample to a stress test, to evaluate their sturdiness. In
  	this latter example, we might have a benchmark in mind - for example, we
  	might want to evaluate the likelihood that a certain appliance will fail
  	in the first year of operation, matching this likelihood with the costs
  	that we might incur because of our warranty. In other cases, typically
  	when testing for the medical effectiveness of a treatment, there is no
  	obvious benchmark, and to make the experiment meaningful, we need to
  	compare the result of the new treatment with those from an old,
  	reference, treatment, or even with no treatment at all. An additional
  	issue is that the observed results might be due to causes that we have
  	not identified in the first place. These "lurking" variables
  	can sway the result in a way that leads us to incorrect conclusions. The
  	methods in use in this area try to limit as much as possible these
  	pitfalls.
    
    
  	As we all know, this type of statistical study is very widespread, but
  	it does come with significant challenges. First of all, except in cases
  	like the stress test, in reference to the warranty costs example, there
  	is indeed the need to have a control group, in order to
  	evaluate if the procedure we are testing produces the desired effect or
  	not. Having two groups to compare, adds, to the usual problem of
  	producing a sample, the problem of how to assign individuals to the two
  	sub-samples. The latter question can be addressed by
  	randomizing the design: individuals are assigned to the
  	sub-groups at random. When comparing two treatments, it is also
  	important to avoid a bias due to people (or even only the experimenters)
  	knowing which treatment they are experiencing. Thus, the "golden
  	standard" is the double blind randomized design, where
  	only the designers of the experiment know who is getting what treatment.
    
    
  	There are several issues that are not easy to address even in the best
  	experiment. Firstly, there is the problem of how the individuals
  	participating in the experiment are chosen. This is rarely discussed (in
  	fact, in many cases, these are volunteers), but it does affect the scope
  	of any conclusion we might draw. The size of the groups is an obvious
  	issue, and practical considerations may force to work with relatively
  	small groups. In recent years, to address this problem, there has been a
  	growing number of “meta-studies”, studies that do not
  	perform experiments themselves, but rather aggregate the results from
  	many related experiments, in order to work with a sufficiently numerous
  	data set. The problem of properly merging disparate experiments,
  	performed under similar, but different circumstances, is obviously far
  	from trivial, and lies well beyond our scope.
    
	Scientific Measurements
    
  	This is an area where things are more straightforward, since it usually
  	involves nature, and not living beings. When measuring a physical
  	quantity (e.g., the speed of light), the ideal model of observation can
  	be approximated very well if we are careful enough. Indeed, once we set
  	up the experimental apparatus, we should make sure that external
  	influences are reduced to a minimum (e.g., you will not set it up in a
  	building under which there is a subway line with trains running every
  	five minutes). Also we will have to make sure that our instruments are
  	not biased (think of a time measuring device that runs too fast). This
  	is not easy to set up and, indeed, good experimenters are not abundant.
  	A measurement will then be performed many times, in such a way that the
  	results may be viewed as observations that are independent and
  	identically distributed: each measurement is performed in exactly the
  	same manner, and we are careful to ensure that each measurement has no
  	influence on any other. A careful precise experiment will produce
  	different numbers when repeated (in fact, if it doesn't, we may conclude
  	that the observations are not independent), and having eliminated as
  	many perturbing factors as we can, we may feel confident that variations
  	in the measurements will be due to random uncontrollable effects. At
  	this point, we can apply standard statistical techniques, and come up
  	with estimates that are probably the most rigorous application of
  	statistical methods that we have. If you look up the value of physical
  	quantities as published in the scientific literature, you will find
  	statements like "the universal gravitational constant (in Newton's
  	gravitation law) is G=6.67259×10-11±8.5×10-15"
  	(using scientific notation). The number after ± is the standard
  	deviation of our estimate, that was obtained by interval estimation, and
  	the appropriate Student distribution.
    
	One More Issue: Simultaneous Measurements
    
  	Here is yet another trap where inexperienced experimenters will easily
  	fall. In most situations, we will not be measuring one quantity only,
  	even if that is what we have been suggesting all along this course. The
  	reason for this reduced presentation is that simultaneous observation of
  	several quantities poses a host of additional issues. To be precise, if
  	we are observing more than one feature (and this is what will often
  	happen), the proper statistical goal would be the joint
  	distribution of the observed quantities. Since this is a
  	significantly more complex problem, it is tempting to bypass it, and
  	pretend that the data as coming from independent
  	factors. Unfortunately, this is often a ridiculously unrealistic
  	assumption. Depending on what you will actually work out of the raw
  	data, your conclusions might be fine, but they could also be
  	meaningless. You would be surprised to learn how often badly designed
  	experiments have led to totally meaningless conclusions, simply because
  	the researchers did not account for the fact that the various
  	measurements they took were correlated (in the intuitive, as
  	well as technical, sense). Of course, the most famous recent case of
  	mishandled dependencies is the wild underestimate of the likelihood of a
  	“snowball effect” in mortgage defaults in the years leading
  	to the crash of 2007. While the assumption was not of independence, the
  	lack of data prompted financial operators to “guess” the
  	dependencies using a method without solid empirical justification.
    
	Conclusion
    
  	This has been, obviously, a very cursory exploration of the issues
  	involved in designing experiments. In real circumstances, the
  	considerations we made may have different impact. Unfortunately, it is
  	not always easy to sort out which situations are more affected by less
  	than careful design than others. The main conclusion that you may take
  	from this discussion is that extreme care should be applied when
  	evaluating the significance of a statistical study. A good design behind
  	the study will ensure that the results are very valuable, but a poor
  	design should be a red flag, as it is all too easy to draw unwarranted
  	conclusions from a poorly conducted experiment.
	

