
An Example of Questionable Modeling

As mentioned, the normal distribution is a very popular model for statistical modeling. There is a good
reason for that: the Central Limit Theorem provides a theoretical support for this choice in many situa-
tions.

However, even a good thing can be pushed too far. While it may not always be obvious when a normal
distribution may be inappropriate, an obvious case is when the quantity under consideration cannot take
negative values, and yet this could happen with positive probability under a normal model. This dilemma
has generated some curious pseudo-solutions. Let us look at this situation closer.

Case 1: The CLT is reasonably applied

For instance, this is the case in many binomial cases (e.g., polling): the number of positive responses
cannot be less than zero, yet the normal approximation is practically always used. This is not a real
problem: suppose, to argue through a concrete example, that you are polling 1000 people, and that the
proportion of positive responses has been 0.7. That suggests a normal approximation for the average of,
approximately, mean 0.7, and variance

0.7 · 0.3

1000
= 0.00021. Under such a model, the probability of a nega-

tive average is

P [X < 0]=P

[

X − 0.7

2.1 · 10−4
√ .− 48

]

which is ridiculously small (whatever software you use, it will almost surely evaluate to 0).

More generally, as long as the probability of the negative tail is negligible, there clearly is no harm done
with a normal approximation: after all, we know it is an approximation, and a minute glitch like this is on
par with the impossibility of outrageously large values too.

Case 2: No Theorem Was Applied, and we just took the normal
because we like it

This strange attitude is much more present than one would imagine, and it is particularly active in the
non-mathematical, non-statistical “practical” research literature (a couple of examples are quoted at the
end). In these circumstances, the use of a normal distribution is not justified by any specific argument,
and the unfortunate fact that negative values of a most surely positive quantity have a non negligible
probability is handled with an amazing ad-hoc tool: the distribution is arbitrarily truncated.

This means that, instead of the usual normal distribution function P [X 6 x], a conditional distribution

function is used:
P [X 6x]

P [X > 0]
(more generally, you may find a conditioning on {a6X 6 b}, for some values a,

b). The problem here is that there is no theoretical argument, and the use of this truncated distribution is
simply motivated by habit and, possibly, convenience.

Fact is, if we are looking at a positive quantity, there are many choices for surely positive distributions,
and some better arguments (such as suitable limits, or other theoretical arguments) should be produced to
support our choice. The truncated normal, however, has no reasonable argument in its favor at all, since
it does not appear “naturally” in any significant modeling theorem!

One counter-argument could be the following. Since we may not have a solid argument for any distribu-
tion, we might as well use one that is easy to use, and does not describe things too badly. This might be
acceptable, but, then again, it all depends on what you are going to do with your model. Let us look at
an artificial simple example that illustrates one of many possible pitfalls.
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A Simple (a little naive) “Counter-Example”: Comparing an Exponential Vari-
able and a “Truncated Normal” One

Consider a set of data, which only takes positive values. Suppose also that a histogram shows that higher
values are less present in the sample than lower values. Compare now the consequence of modeling this
experiment with an exponential random variable or a truncated normal. Suppose also, for simplicity, that
it turned out that the “right” truncated normal model was a standard normal conditioned on being posi-

tive, which has density (for x> 0)
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2 . Let’s call such a Random Variable Y .

Remark 1. Actually, it is not hard to see that, the distribution of Y is the same as that of the absolute
value of a standard normal variable. In certain circumstances, this could actually be a reasonable model.
The choice here is motivated by the ease of computing mean and variance of this distribution, as opposed
to a more generic truncation (the details that follow are meaningful if you took at least a second calculus
class—if you didn’t, you will just have to take my word for it).

Indeed, by substituting u=
x
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2
, du= xdx in the calculation for the mean, and by integrating by parts, with
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in the calculation of EY 2, we have
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The expected value of this distribution happens to be
2

π

√

≈ 0.8, and its variance 1. Hence, an exponential

distribution of expected value 1 (and, consequently, standard deviation and variance also equal to 1)
would have similar indexes. For this exponential distribution, P [X >x] = e−x.

Now, choosing one or the other has big implications in terms of the likelihood of observing large values.
For example, using the normal tables, we see that P [Y > 3] ≈ 0.002, while P [X > 3] ≈ 0.05, and the dis-
crepancy grows fast if you go further out. In other words, the likelihood of observing a value larger than 3
is 25 times larger if we adopt an exponential model. Incidentally, using a “fat tail” model (where the den-
sity would decrease, as x increases, no faster than a power of x) would cause an even greater discrepancy.

As a related anecdote, among the many causes behind the market crash of 2007 a small contribution was
provided by the use of normal models to asses the risk financial institutions were exposed to. This made
big losses extremely unlikely, yet that’s precisely what happened (a 5% probability is considered seriously
in risk management).
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