
Some Mathematical Notation

We will need to agree on some notation to express a few mathematical operations we will need along this
course.

Variables and Constants

We will be referring to variables , names attached to quantities whose value may change as we work. Often
these are denoted by upper case letters (many times chosen form the end of the alphabet), as X, Y , Z ,	 .
When referring to specific numerical values that these variables take, we might use corresponding lower
case letters, as x, y, z, 	 . A collection of values that are somehow connected, may be indicated by using
lower case letters with an index , as a subscript, as in x1, x2, x3	 , xk, 	 , xn (so, in this example, the index
k was used as the generic value of the subscript, and the index n referred to the largest index: we are
dealing with n numbers here.

Occasionally, we may have a formula expressing what number is the k − th in this sequence. For
example, if the numbers are the first 10 integers, we will have x1 = 1, x2 = 2, 	 , xk = k, 	 , x10 = 10. If the

numbers are, say, the reciprocals of the first n integers, we will have the generic formula xk =
1

k
, for k = 1,

2,	 , n

Sums

We will often have to consider the sum of several numbers. For small sums, no special notation is needed:
if we have to add three numbers x1, x2, x3, it’s not a problem to write x1+x2+ x3. This becomes awkward
when we are summing many (say, 100, or more) such numbers, or, even worse, when we are keeping the
number of addends generic, as in “sum n numbers x1, x2,	 , xn”.

For this, the common solution is to employ “sigma notation”, also called “summation notation”: a capital
Greek letter

∑

(corresponding to the letter S in the Latin alphabet), with indexes expressing the range
of the sum. For example, the sum of 10 numbers x1, x2,	 , x10 is written in a compact way as

∑

k=1

10

xk

The sum of n such numbers would be

∑

k=1

n

xk

This notation helps write some famous formulas very neatly. For example, the sum of the first n integers
is

∑

k=1

n

k=
n(n+1)

2

and the sum of the squares of the first n integers turns out to be

∑

k=1

n

k2=
n(n+1)(2n+1)

6

1



Note that adding n times the same number a will result in
∑

k=1

n
a = na. Also note how, this notation

being a shortcut for a sum, all the usual rules apply. For example,

a
∑

k=1

n

xk=
∑

k=1

n

axk

is the usual distributive rule, while

∑

k=1

n

(xk+ yk)=
∑

k=1

n

xk+
∑

k=1

n

yk

expresses the fact that we can add up numbers in any order we like (commutativity), and

∑

k=1

n

xk=
∑

k=1

m

xk+
∑

m+1

n

xk

(1<m<n) reminds us that we can group the terms of a sum at will (associativity)

.

Applications in Statistical Formulas

We will see that we will need frequently to write a few formulas in statistics. The building blocks are n

numbers obtained from observations. Let’s call them, as before, x1, x2, 	 , xn. We will have often to com-
pute

• their sum:
∑

k=1

n
xk

• the sum of their squares:
∑

k=1

n
xk
2

These are then used to compute

• Their average or mean:
1

n

∑

k=1

n
xk = x̄ (the overbar is a common notation). Note that

∑

k=1

n
xk =

nx̄

• Their variance (we’ll get to this in detail later):
1

n

∑

k=1

n
(xk− x̄ )

2=
1

n

∑

k=1

n
xk
2
− x̄ 2

The last equality follows from a little algebra, which is easy once you become fluent in utilizing summa-
tion notation:

1

n

∑

k=1

n

(xk− x̄ )
2=

1

n

∑

k=1

n
(

xk
2
− 2x̄xk+ x̄ 2

)

=
1

n

(

∑

k=1

n

xk
2
− 2x̄

∑

k=1

n

xk+nx̄

)

=

=
1

n

(

∑

k=1

n

xk
2
− 2x̄ ·nx̄ +nx̄

)

=
1

n

∑

k=1

n

xk
2
− 2x̄ 2+ x̄ 2=

1

n

∑

k=1

n

xk
2
− x̄ 2

2


