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	1Returning to Non Independent Random
	Variables
    
  	Much of the previous work has been focused on studying a single
  	distribution, by observing many independent random variables,
  	having that same distribution. Independence made for very convenient
  	simplifications in our work.
    
    
  	However, we often have to deal with a different problem: there are two
  	quantities, and we would like to know how they influence each other (of
  	course, we could consider the case of more than two as well, but that
  	increases the complications considerably, so we won't). You have seen
  	many such cases: does smoking have something to do with getting cancer?
  	does the stock market react to changes in the weather? <put your
  	favorite question here>?
    
    
  	Unless we have some powerful theory to answer such questions (and,
  	outside of physics, that's rarely the case), the best we can do is
  	observe the two quantities an see if they seem to influence each other
  	or not. As usual, bare data will tell us exactly nothing. We need a
  	model.
    
	1.1A Mathematical Model for Dependence
    
  	We already have a model for dependence: we consider our two quantities
  	to be modeled by two random variables, and we can try to figure
  	out if knowing the value of one changes our beliefs about the other.
  	That is, we can try to figure out if the conditional
  	distribution of one, say Y, given
  	the other, say X, is or isn't different
  	from the original distribution.
    
    
  	As a silly example, if X is a two-valued
  	random variable, telling us whether a die turned out or or even, and
  	Y is a random variable telling us how many
  	points came up on that die, we have that
    
    
  	P[Y=k]=16
    
    
  	for k=1,2,…,6,
  	but
    
    
  	P[Y=1|X=odd]=13,⁡⁡P[Y=1|X=even]=0
    
    
  	and so on...
    
    
  	On the other hand, we are probably safe if we say that the probability
  	of throwing 1 doesn't change if the weather across the globe is rainy or
  	not, nor does it change depending on the color of the shirt we are
  	wearing.
    
    
  	Unfortunately, it takes a lot of work to determine (even only
  	approximately) the full conditional distribution of one variable given
  	another: we have to check all (or, at least, very many) possible
  	combinations. While this is the sure way to go, given its difficulty, it
  	is understandable that a less cumbersome way has been explored
    
	1.2Independence and Correlation
    
  	We have already mentioned that two independent random variables are also
  	uncorrelated: this showed up when we discussed the variance of
  	the sum of two such variables. In general, as you may recall, it is true
  	that
    
    
  	Var[X±Y]=Var[X]+Var[Y]±Cov[X,Y]
    
    
  	where
    
    
  	Cov[X,Y]=E[XY]-E[X]E[Y]=E[(X-E[X])(Y-E[Y])
    
    
  	is called the covariance of X and
  	Y.
    
    
  	In most applications, X  and Y
  	represent measurements of things, and thus,their value depends on what
  	units we are using: for example, if they represent lengths, you will
  	have different numbers, depending on whether you are measuring lengths
  	in inches, feet, miles, or light years. It is customary to consider a
  	variation of the covariance that does not depend on what units you are
  	using, called the correlation, defined as
    
    
  	ρ(X,Y)=Cov[X,Y]Var[X]Var[Y]
    
    
  	Given how covariance and correlations are related to moments, it is
  	intuitive that we can work up an estimation method similar to the ones
  	we have for means and variances of single random variables. Thus,
  	estimating that a correlations has some non zero value does give some
  	insight on the fact that the two variables are not independent.
  	Unfortunately, without additional, serious, assumptions, the reverse is
  	far from true: to know (or estimate) that two variables have correlation
  	(or covariance) zero or close to zero means practically nothing. The
  	following artificial example illustrates this:
    
    
 	 
   	 
     	 
       	 
          	Suppose E[X]=E[X3]=0, and
          	consider the two random variables X,
          	and Y=X2.
          	Their covariance is equal to
       	 
     	 
   	 
 	 
 	 
   	 
     	 
       	 
          	E[X⁡Y]-E[X]E[Y]=E[X3]-0=0
       	 
     	 
   	 
 	 
 	 
   	 
     	 
       	 
          	but it is fair to say that they are anything but independent!
       	 
     	 
   	 
 	 
    
    
  	In other words, learning about the correlation of two random variables
  	may tell you very little about their connections. There is a strong
  	assumption that results in no correlation being equivalent to
  	independence, but it is a very strong one.
    
    
 	 
    
	1.3Jointly Gaussian Variables
    
  	The previous discussion justifies the following strategy. Suppose we are
  	looking at a pair of random variables, say X,Y.
  	Suppose also that their joint distribution, that is the
  	collection of numbers like
    
    
  	P[a⩽X⩽b,c⩽Y⩽d]
    
    
  	is a two-dimensional Gaussian distribution. Then, the variables are
  	said to be jointly Gaussian. This means, not only that both
  	X, and Y are
  	Gaussian, but also that statements like the one above, involving both
  	variables, are evaluated using a special density depending on two
  	variables,which is called a 2-dimensional Gaussian.
    
    
  	Note 1. The precise mathematical formulation is not necessary
  	here, but here it is. A one-dimensional Gaussian distribution is such
  	that P[a⩽X⩽b] is equal to the area below the curve
  	12πσ2e-(x-μ)22σ2
  	and the x axis, between the points a and b. A
  	two-dimensional Gaussian distribution is such that the
  	probability above is equal to the volume below the surface, in
  	3-dimensional space, that is the graph of a function like 12πKe-12(A⁡(x-μ)2+B⁡(x-μ)(⁡y-ν)+C(⁡y-ν)2)
  	(where K is an appropriate constant, so
  	that the total volume under the surface is equal to one), over the
  	rectangle a⩽x⩽b,c⩽y⩽d.
  	All we are saying in this section is generally false if the two
  	variables are Gaussian, but not jointly Gaussian.
    
    
  	Under this assumption (and a similar statement holds for a
  	“jointly binomial” case). we have the remarkable result:
    
    
  	Theorem 2. If X and Y
  	are jointly Gaussian and uncorrelated (their covariance, and, hence,
  	their correlation, is equal to zero), they are independent
    
    
  	Please, remember that this can be completely false without the jointly
  	Gaussian assumption. Whether the assumption holds in any given situation
  	may not be easy to determine, and, as it often happens, you might find
  	cases where people simply shortcut the issue, and zoom on checking the
  	correlation of two variables without bothering too much with the
  	niceties of this theorem.
    
    
  	That said, there is more to the story, as long as the jointly Gaussian
  	assumption is justified. In fact, in this case, we can actually nail
  	down the full conditional distribution, once we have determined the
  	covariance/correlation of the two variables! To see how this can work,
  	and how this can provide us with an amazingly powerful forecasting tool,
  	we have to move further, and try to provide a complete model of
  	dependent Gaussian variables (but, keep in mind that much of the
  	construction is contingent on the Gaussian assumption).
    
    
 	 
 	 
    	IGaussian Case: A Rigorous Case For
    	Linearity
 	 
    
	2Why A Model for Dependent Variables?
    
  	We have two random variables, that we expect to be dependent, and we
  	would like to express their dependence explicitly. That is what we do
  	when we do regression analysis. But why would we bother?
    
    
  	The main point of constructing a solid model for how a variable, say
  	Y, depends on another, say X,
  	is (as in most scientific endeavors) so we can predict what
  	value of Y will be observed, if X takes on a specific value. Thus, if we
  	had (we don't, but it would be great) a good model for how the
  	unemployment rate depended on the discount rate set by the Federal
  	Reserve, we would have a powerful tool to solve the unemployment
  	problem. Of course, we would not expect such a dependence to be
  	mechanical, but rather probabilistic: it would be “very
  	likely” that unemployment would fall within a certain interval, if
  	the discount rate was set at, say, 2.5%.
    
    
  	While this simple dependence between interest rates and unemployment is
  	well known not to exist in the real world, there are less momentous
  	pairs of quantities where one can extract reasonable predictions once a
  	good dependency model has been found. That is the role of regression
  	analysis: predict what has not been observed, on the basis of
  	past observations.
    
    
  	The surprisingly simple tool for this is what is called the “Least
  	Mean Squares” method. In brief, you look at X
  	and Y as a pair, observe them
  	together, so that you can get a hold on the distribution of
  	the pair, and you try to approximate the “cloud” of
  	data with the “best” straight line you can come up with.
  	“Best” is defined, in this context, as the line that
  	corresponds to the least mean square error.
    
	2.1Theoretical Least Mean Squares
    
  	Under the assumption of joint Gaussian distribution, it can proved that
  	we can always write
    
    
  	Y=a⁡X+b+ε
    
    
  	where a,b
  	are real numbers, and ε is a Gaussian
  	random variable, whose mean is zero, and is independent of X.
  	What is more, a and b
  	can be determined by choosing them so as to make the quantity
    
    
  	E[(Y-a⁡X-b)2]=E[ε2]
    
    
  	as small as possible. Of course, to do this, we need to know the true
  	distribution of the pair X,Y,
  	which we normally will not.
    
    
  	Remark 3. We can make this more specific. Under the assumptions
  	we made, the expression a⁡X+b
  	can be interpreted as the expected value of Y,
  	conditioned on the value of X
  	(that is, we consider the distribution of Y,
  	when we condition it on a specific value of X—they are not independent in this model—and take the corresponding expected value. The
  	number E[ε2] happens to be the corresponding
  	conditional variance, and, in conclusion, the whole procedure
  	determines the distribution of Y, if we
  	assume to know the value of X (it so
  	happens that this is a Gaussian distribution, and hence identifiable
  	once we know its mean and variance). Given the distribution of X, we can then reconstruct the distribution of
  	Y, and, in fact, the joint distribution of
  	X, and Y.
    
    
  	Remark 4. The whole procedure, as you my not see immediately,
  	is asymmetric: the roles of X and
  	Y are distinct! In particular, if
  	we switch their roles, and try to provide a least men squares estimate
  	of X=a'Y+b'+ε',
  	the numbers we get are not what we would get by solving the
  	previous LMS estimate for X!
    
    
  	Note that if Y=a⁡X+b+ε,
  	E[Y]=a⁡E[X], and E[X⁡Y]-E[X]E[Y]=a⁡E[X2]+b⁡E[X]-a(E[X])2 (recall that E[ε]=0,
  	and E[Xε]=E[X]E[ε]=0,
  	since X and ε
  	are independent), that is
    
    
  	Cov[X,Y]=a⁡Var[X]-b⁡E[X]
    
	2.2The Least Mean Squares Formulas
    
  	The problem of finding the values of a and
  	b that will minimize the “mean square
  	error” is not difficult to solve, but you do need some tools. Most
  	books will tell you that you need some calculus, and this certainly
  	works, but you can get away with less: a little geometry of ellipses
  	will do the work.
    
    
  	The result is
    
    
  	a=Cov[X⁡,Y]Var[X],⁡b=E[Y]-a⁡E[X]
    
    
  	If you are curious, the proof is as follows (this is obviously for your
  	information only)
    
	2.2.1Proof of the Least Mean Square
	Formula
    
  	Suppose we were able to compute all expectations explicitly, having a
  	full description of the joint distribution of our pair (X,Y).
  	Then, we could, for any choice of a,b,
  	compute
    
    
 	 
   	 
      	E[(Y-a⁡X-b)2]=E[Y2+a2X2+b2-2a⁡X⁡Y-2b⁡Y+2a⁡b⁡X]=
     	 
     	 
   	 
   	 
      	=a2E[X2]+b2+2a⁡b⁡E[X]-2a⁡E[X⁡Y]-2b⁡E[Y]+E[Y2]
     	 
     	 
   	 
 	 
    
    
  	If we look at this expression as a function of a
  	and b, it describes and ellipse in a
  	hypothetical a-b
  	plane every time we fix a value for the whole expression. It is easy to
  	see that the higher the value, the larger the ellipse, and that all
  	these ellipses are all concentric. Hence, the choice of (a,b)
  	that makes this expression the smallest is the common center of
  	all these ellipses. This is easy to determine, if you have studied the
  	geometry of ellipses that may be oriented obliquely in the plane. Even
  	if you haven't we can find the center with a couple of tricks.
    
    
  	The simple case: b=0
  	Suppose that, for some reason, we think that we expect X=0
  	to always correspond to Y=0
  	(it could be because of the specific application, one cannot have a
  	non-zero value if the other is zero). Then the expression we found is
  	simpler:
    
    
  	a2E[X2]-2a⁡E[X⁡Y]+E[Y2]
    
    
  	This, as a function of a, is a parabola,
  	concave up, and has a minimum at its vertex, which is at (from your
  	algebra classes)
    
    
  	a=E[X⁡Y]E[X2]
    
    
  	Hence, the least mean square zero-intercept line is given by
    
    
  	Y=E[X⁡Y]E[X2]X
    
    
  	The case E[X]=0: If X has zero expectation, the expression is
    
    
  	a2E[X2]+b2-2a⁡E[X⁡Y]-2b⁡E[Y]+Y2
    
    
  	To find the center of this ellipse, we have only to “complete the
  	square”, as you have already seen in your precalculus classes.
  	Note that we don't care for the full operation: we only need the center,
  	so we only need to find what is missing to complete the two squares in
  	a and b. For
  	a we have
    
    
  	a2E[X2]-2a⁡E[X⁡Y]=E[X2](a2-2aE[X⁡Y]E[X2])
    
    
  	and it is now clear that the center will correspond to a=E[X⁡Y]E[X2],
  	as in the simple case above. The value of b
  	is even faster to find:
    
    
  	b2-2b⁡E[Y]
    
    
  	shows that the center is at b=E[Y].
    
    
  	The general case:
    
    
 	 
    	If you have taken a Calculus class, you know how to
    	find the minimum of our expression in general: you compute its
    	derivative, considering it only as a function of a,
    	and set it equal to zero, you then compute its derivative considering
    	it only as a function of b, and set this
    	to zero. The two equations in a and b that you get are linear and easily solved:
 	 
 	 
   	 
     	 
        	2a⁡E[X2]+2b⁡E[X]-2E[X⁡Y]=0
       	 
       	 
     	 
     	 
        	2b+2a⁡E[X]-2E[Y]=0
       	 
       	 
     	 
     	 
        	b=E[Y]-a⁡E[X]
       	 
       	 
     	 
     	 
        	a⁡E[X2]+E[X]E[Y]-a(E[X])2-E[X⁡Y]=0
       	 
       	 
     	 
     	 
        	a=E[X⁡Y]-E[X]E[Y]E[X2]-(E[X])2
       	 
       	 
     	 
   	 
 	 
 	 
    	Notice how the solution for a is the
    	ratio of the covariance of X and Y, divided by the variance of X.
 	 
    
    
  	You can get the same result, with a little work, using only
  	algebra, though. For this purpose, we write our problem not for
  	the variable X, but for the variable X∼=X-E[X]. Of course,
  	E[X∼]=0, so we are in the
  	previous case, and find, for the regression Y=a∼X∼+b∼
    
    
  	a∼=E[X∼⁡Y]E[X∼2],⁡b∼=E[Y]
    
    
  	that is
    
    
 	 
   	 
      	Y=E[(X-E[X])Y]E[(X-E[X])2](X-E[X])+E[Y]
     	 
     	 
   	 
   	 
      	Y=E[X⁡Y]-E[X]E[Y]Var[X]X+E[Y]-E[X]E[X⁡Y]-E[X]E[Y]Var[X]
     	 
     	 
   	 
 	 
    
    
  	that is, back to our original a and b, in Y=a⁡X+b,
    
    
  	a=Cov[X⁡,Y]Var[X],⁡b=E[Y]-a⁡E[X]
    
    
  	which is the same result we find if we use calculus, as well as matching
  	our proposition 5. From our previous formulas, we can also write
    
    
 	 
    
    
  	We can also write
    
    
  	a=ρ(X,Y)Var[Y]Var[X]
    
    
  	As a side result, we may notice that Var[Y]=Var[a⁡X+b+ε]=a2Var[X]+Var[ε] (you may
  	want to check this in the probability module), so that
    
    
  	ρ[X,Y]=Cov[X,Y]Var[X]Var[Y]=a⁡Var[X]a2(Var[X])2+Var[X]Var[ε]
    
    
  	equivalent to ρ(X,Y)=aVar[X]Var[Y],
  	but with no explicit use of data from Y.
    
	3Application To A Sample
    
  	Of course, in the situations we are interested in, we do not have the
  	joint distribution, so the previous discussion will seem completely
  	theoretical. But here is the way the problem is solved in statistics:
    
    
 	 
   	 
     	 
        	To find our “best” estimate for the coefficients a and b, we
        	will do the same calculations – and hence arrive at the same
        	formulas – using the empirical distribution
        	of our sample, in place of the (unknown) “true”
        	distribution.
     	 
   	 
 	 
    
    
  	If you go and look what the formulas for estimating the
  	“best fit” line and/or the correlation between two variables
  	are, you will notice that they look strikingly similar to the formulas
  	in the previous section, once you make  a crucial connection.
    
    
  	Recall that the empirical distribution of a sample x1,x2,…,xn
  	is the probability distribution that assigns probability 1n
  	to each value xk. If
  	we go and look at formulas that estimate the least mean square
  	approximation of one variable to another, the formulas are exactly the
  	ones in the previous section, provided we use he empirical
  	distribution in place of the “true” one.
    
    
  	Thus, for example, the expected values are replaces by the empirical
  	means, and the covariance and variance by their empirical analogs, 1n∑k=1nxkyk,
  	and 1n∑k=1nxk2.
  	In published formulas, the factors n are
  	rearranged for looks, so it might not be immediately obvious that we are
  	dealing with empirical moments as building blocks for the solution.
    
	3.1Review: Theoretical and Empirical
	Distributions
    
  	You may recall from a previous module the following scheme, which is at
  	the foundation of statistical reasoning. The scheme goes as follows.
    
    
 	 
    	We assume that an observation can be represented as observing a random
    	variable X. Repeated observations, if
    	performed properly, should correspond to successive observations of
    	random variables X1,X2,…,Xn,
    	independent, and all with the same distribution as X.
 	 
 	 
    	X has a distribution which determines
    	things like P[a⩽X⩽b], as well as parameters like E[X],⁡Var[X], and so
    	on. We are trying to determine this distribution, or, at least, some
    	of its parameters.
 	 
 	 
    	What we have are our observations: X1=x1,X2=x2,…,Xn=xn.
    	These represent a random occurrence: if we should repeat our
    	experiment, we would get different values. Now, we can think of these
    	observations as constituting a random distribution
    	(called the empirical distribution), by assigning weight
    	1n to each
    	observed value. It turns out (it is an extension of the Law of Large
    	Numbers) that, under reasonable assumptions, if we consider larger and
    	larger samples, as n grows, the number of
    	observations between a and b
    	will get closer and closer to P[a⩽X⩽b], and, of course, 1n∑k=1nxk
    	(the “expected value” of the empirical distribution) will
    	get closer and closer to E[X] (that's exactly the LLN), and so on.
 	 
    
    
  	Now, the facts above suggest that we try to use the empirical
  	distribution in place of the theoretical one (which we don't know). It
  	won't be exact, but, for large samples, it won't be too bad. Also, the
  	statements above can be refined, so we can actually give some precise
  	meaning to “close”.
    
    
 	 
    
    
  	You can now see what is going on in the Linear Regression model:
  	assuming that the pair of variables we are working with are jointly
  	Gaussian, our procedure consists in substituting their empirical
  	distribution for their theoretical distribution in the search for
  	a and b as
  	discussed here. Theorems in the spirit of the LLN will guarantee that
  	our (empirical) coefficients will get closer to the “true”
  	ones for large samples, and theorems in the spirit of the CLT will allow
  	us to produce the analog of interval estimates, as well as tests, much
  	like we did in the previous modules.
    
    
 	 
    	Note 5. The expression we are minimizing becomes, in the sample
    	case,
 	 
 	 
    	1n∑k=1n(yk-a⁡xk-b)2=1n∑k=1nyk2+a2n∑k=1nxk2+b2-2an∑k=1nxkyk-2bn∑k=1nyk+2a⁡bn∑k=1nxk
 	 
    
    
  	This is often called “the sum of the residuals”, and, with a
  	little manipulation to get rid of the amplifying effects due to your
  	choice of units, can be used as a qualitative measure of how tight our
  	approximating line will be to the real data.
    
    
 	 
 	 
    	IINon Gaussian Case: LMS As an
    	Intuitive Tool
 	 
    
	4Why Least Mean Squares?
    
  	Regardless of any assumption of normality (let alone, of joint
  	normality), you will find extensive use of least mean square
  	interpolation of data points. Why are we using the Least Mean
  	Squares (LMS) method to approximate a cloud of points with a line?
  	An why a line, in the first place?
    
    
  	There are easy answers to both, but they are not as strong as the logic
  	we discussed in the previous part.
    
    
 	 
    	We look for a line because lines are easy to
    	handle and to understand. They also allow for easy pointing out of
    	trends
 	 
 	 
    	We use the LMS method, because the math is much simpler than other
    	options
 	 
    
    
  	Both items are true, but their strength is a bit the strength of
  	convenience, rather than the strength of a solid logical foundation.
    
	5Leaving the Gaussian Cover
    
  	Remark 6. As already stated, the powerful theory we sketched in
  	the previous part based on a very specific assumption about the
  	distribution of our pair. All the indexes that any regression program
  	will produce have a direct interpretation in this case. If this
  	assumption cannot be made, or is outright inappropriate, the theory
  	disappears, and we are, indeed, only left with the somewhat lame
  	justification listed at the very beginning of this part. Note that, like
  	most anything we do in science, that does not mean that, in itself, it
  	is wrong to use LMS outside of the Gaussian framework. It would
  	be wrong, if we pretended that our linear model meant as much as it
  	would if the distribution was Gaussian. It is OK to use it, as long as
  	we realize that we cannot make very strong deductions from our
  	calculations, and that, generally speaking, we are not describing our
  	pair of variables in the most precise and illuminating way. In the last
  	section we will discuss what, if anything, we should make of a least
  	mean square estimate when the Gaussian assumption is not acceptable.
    
    
  	The theory we have briefly sketched is mathematically sound, and
  	provides a rigorous underpinning to the use of linear regression,
  	provided its assumptions are a reasonable model for the practical
  	situation we are studying. There are several directions that can be
  	taken if we leave the comfort of the Gaussian environment.
    
	5.1Non Gaussian Least Mean Squares
    
  	Even if we have to drop the Gaussian assumption, we can still make sense
  	of a least mean squares approach to estimation—the
  	only problem is that most (or all) of the probabilistic support is lost,
  	and we cannot use things like interval estimates and tests with much
  	confidence, if at all.
    
    
  	In fact, the whole method can be cast in a non probabilistic frame, with
  	the advantage of not requiring stringent assumptions, and with the
  	downside that what we get is only what we see—for
  	example, no deep information on how likely it is that our estimates will
  	be effective for forecasting (sure, the sum of residuals will tell us
  	how good the regression line fits the data we already have, but
  	it gives no argument as to why it should be good for data that we will
  	look for in the future). There is a quote of Laplace, arguing that
  	minimizing the square error is, so to speak, the “natural”
  	thing to do, but, with all due respect, the biggest advantage of this
  	approach is its mathematical simplicity, more than its
  	“naturality”.
    
    
  	In essence, the method assumes that we can say that the following model
  	is reasonable: “The two quantities X
  	and Y are linearly dependent, up to a
  	random, mean zero error”. Minimizing the square error means then
  	minimizing the variance of the error term. Note that, read like this,
  	the model Y=a⁡X+b+ε
  	often considers X not to be
  	random, hence, the notion of correlation loses its real
  	meaning. Incidentally, if we assume that, instead, X
  	is in effect a Gaussian random variable, and ε
  	is a mean zero Gaussian random variable, independent of X,
  	then we are fully in the situation described in the first part.
    
    
  	The “naive” justifications listed at the very beginning of
  	this part are not unreasonable. In particular, minimizing the square of
  	the discrepancies between our data and our model is
    
    
 	 
    	convenient: it makes for very tractable mathematics, as opposed to,
    	say, minimizing the sum of the absolute values of the discrepancies
 	 
 	 
    	more or less reasonable: it treats small deviations as not too
    	important, but takes big deviations seriously—however,
    	since the threshold is the number 1 (a<1⁡⁡⇒⁡a2<|a|,⁡a>1⁡⇒⁡a2>⁡|a|),
    	“small” and “large” in this argument depend on
    	the units chosen.
 	 
    
    
  	This has downsides, of course. For example, this method is very
  	sensitive to outliers. More damning, though, is the apparent positive
  	feature that, no matter what your data is, there is always a
  	least mean square linear estimate. That is, even if the data
  	has no reasonable way of being interpreted as “linear
  	dependency+error”, it will still provide an answer! To be a bit
  	more precise, in a way, you can always argue for some such model, except
  	that, provided you don't rely on just a few data points, the
  	“error” term will prove to be huge, and will grow, as you
  	add data points (in principle, if the Gaussian model is applicable,
  	adding data points should not increase the least mean square error too
  	much—this argument can be made very precise,
  	but we can leave it at that here, even though details are available on
  	request).
    
    
  	To drive this point home, if you will go on the Internet and download
  	unemployment data for the last N years
  	(depending on your storage, and how far back the data is available), and
  	Fed discount rates for the same period of time, you will find a
  	linear regression line between the two. Whether this line is of
  	any use in forecasting anything, is a different question.
    
	5.2Non Linear Least Mean Squares
    
  	Of course, if the data seems at odds with a “linear+error”
  	model, let alone a jointly Gaussian assumption, we can always try
  	something else, as in
    
    
 	 
    	Polynomial (quadratic, cubic, ...) + error
 	 
 	 
    	Exponential or logarithmic + error
 	 
 	 
    	Some other functional dependency + error
 	 
    
    
  	This is indeed sometimes done. Of course, probability and statistics are
  	almost completely out of the picture now, so tools like confidence
  	intervals or tests are unavailable. Also, all these models are workable,
  	essentially, only if they have “free” parameters (the analog
  	of a and b in
  	the linear model) that appear linearly. For example, a
  	quadratic model like
    
    
  	Y=a⁡X2+b⁡X⁡+c+ε
    
    
  	can be treated, essentially, in the same way (if you don't have
  	calculus, you need geometry of surfaces in 3 dimensions to do the work,
  	but you get the idea). Similarly, a model like
    
    
  	Y=a⁡eX+b+ε
    
    
  	is not any different from a linear model. Indeed, you only have to
  	introduce a new variable, say, Z=eX,
  	and, the model is now linear in Y and Z. Z could not be
  	Gaussian in this case, since it is necessarily positive, but if it could
  	be reasonably approximated as Gaussian (as in E[Z]=100,Var[Z]=4—the probability of a negative value of Z is so small, that we might as well ignore it),
  	independent of ε, we could even bring in
  	the whole theory from the first part.
    
    
  	However, a model like
    
    
  	Y=a⁡eb⁡X+c+ε
    
    
  	becomes way more elaborate, when you try to find a,b,c
  	that minimize
    
    
  	1n∑k=1n(yk-a⁡eb⁡xk-c)2
    
    
  	for the n data points (x1,y1),(x2,y2),…,(xn,yn) (you recalled that this is what we had
  	to do, right?). There is no way around calculus to find this minimum,
  	and the equations we end up are not linear in a,b,c,
  	which makes them very awkward to solve.
    
    
  	We might have some theoretical argument to argue for a specific
  	“function type + error” model, but, oftentimes, we don't:
  	it's only that “the data looks like that”. When that's the
  	case, we don't really have a solid argument (as we have under the
  	jointly Gaussian assumption) to support any of these models, and even
  	the criterion “choose the functional dependency that minimizes the
  	least mean square error” does not work: if you have n
  	data points, there always is a polynomial of degree n-1
  	whose graph goes through these n pairs
  	exactly. It is not an interesting model, since chances are that if we
  	make an n+1-th
  	observation, it will not sit on the graph at all, but we are also
  	without a strong theoretical argument for anything else. At best, we can
  	argue that whatever choice we made, we tried the simplest functional
  	form that, somehow, seemed to capture the looks of the data, and cross
  	our fingers that this will yield useful predictions.
    
	6Pitfalls
    
  	If you are applying a least mean square method to some data cloud, for
  	example to find the “best fit” straight line, there is an
  	important fact you have to bear in mind, as we discussed above:
  	regardless of the structure of the data, there is always a unique
  	least mean square line. In other words, the procedure is
  	“blind” and will spit out a “best fit” line,
  	regardless of whether a linear model makes sense or not.
    
    
  	Of course, as you may explore also referring to the more extensive
  	discussion in the On Line Stat Book, the “residuals” (the
  	sum of squares that we have minimized) will be huge, if a line is not a
  	good approximation. Nonetheless, if you are not looking, you can come up
  	with pretty nonsensical results.
    
    
  	In a way, whenever a joint Gaussian model is not really justified,
  	linear (or, for that matter, nonlinear) regression is more part of
  	descriptive statistics, than of inferential statistics—even though, since we have things like variances,
  	and errors, this not an accurate statement. This should be meant in the
  	sense that, in such generic cases, whatever regression method you use
  	has to be thought of as a tool to summarize (in a way, arbitrarily) your
  	data, rather than providing a model for the data, in the strict sense of
  	the word. This is a delicate subject: since your choice of a straight
  	line, or some other curve, is, at the end, based on your intuition, you
  	are not working on an objective basis, but rather providing some
  	numerical underpinning to your feeling for the data. This is a
  	perfectly legitimate operation, but it is quite different from one that
  	presents itself as a full-fledged objectively based prediction model.
	

