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  	In a way, we could wrap up this module in a few lines. Statistical tests
  	can be viewed at first glance, as a “reverse read” of
  	interval estimation. Indeed, in their simplest form, they are.
    
	A simple approach to tests
    
  	Consider the following problem: we would like to know if the “true
  	mean” of a random variable is equal to a certain value μ. For example, we would like to determine if
  	the batteries our factory is producing truly produce a voltage of mean
  	1.5 V. We take a sample, and, using our expertise in interval
  	estimation, produce an interval estimate for the mean, with a confidence
  	level we feel comfortable with. If 1.5 falls inside this interval, we
  	can say that the test was passed, if it doesn't, we have to say that the
  	test was failed.
    
    
  	Of course, we can repeat the pattern for any other estimation problem we
  	have studied, or will learn about in the future. And, in a way, that's
  	almost all there is to statistical tests. However, this would be a bit
  	naive, as proved by the enormous amount of space this question takes in
  	any statistics course. Part of this space is not far from fluff, as is
  	the case in other areas of statistics, but, in fact, there is more to
  	the problem of testing than the short paragraph above. However, maybe
  	not surprisingly, the “more” concerns mostly the
  	interpretation of test results, rather than the technique, which does
  	not go much beyond what we described above.
    
	A more sophisticated approach: Hypotheses
	A small disclaimer
    
  	The history of statistical tests is somewhat complex and surprisingly
  	acrimonious. Also, its theory dates back to the early 20th Century, is
  	full of personalty conflicts, and this might explain the somewhat rigid,
  	and sometimes confusing terminology that it comes with. In fact, as we
  	will see momentarily, some of its formulations are outright misleading.
    
    
  	Additionally, this methodology comes, so to speak, in two parts. The
  	first, and best known, was formulated and strongly pushed by Fisher. The
  	second, possibly just as important, if not more, was formulated slightly
  	later by Neyman and Pearson, and was bitterly opposed by Fisher. The
  	confusion that this semi-religious debate created did not help to make
  	it as clear and simple as it really is.
    
    
  	As an aside, we do not address in this course the interesting, but very
  	different, approach to statistics known as Bayesian Statistics,
  	which has had a significant upswing in recent decades. Just so you know,
  	though, the theory we discuss here is completely meaningless from a
  	Bayesian point of view. Since, however, the reasonable attitude to the
  	existence of diverging methodologies is that they fit different
  	problems, classical testing has a huge role in all our lives (after all,
  	what we eat, in terms of FDA approval, the medical treatments we take,
  	in the same terms, the whole warranty system for what we buy, and on,
  	and on, relies on applications of this theory), and we should definitely
  	learn what it is, what it can do for us, and, even more importantly,
  	what it cannot do for us.
    
	Null and Alternate Hypothesis
    
  	As it often happens, the terminology used in statistical testing is
  	somewhat peculiar, but we can make sense of it if we stop and think for
  	a moment. This first part of the discussion is essentially due to
  	Fisher, who put testing on a precise basis.
    
    
  	Traditionally, the statement tested is called “the Null
  	Hypothesis”, and labeled H0.
  	This is a statement assumed to be true, until proved false. For example,
  	we may test the hypothesis that a certain distribution has expected
  	value equal to a specific number μ0.
  	The “Alternate Hypothesis” should be the negation of the
  	Null Hypothesis, hence we would, in this case, set it as “H1:μ≠μ0”,
  	where μ is the “true”
  	expectation of our random variable.
    
    
  	The logic of a statistical test is the following: we observe a sample
  	with the distribution we are studying, and look how it turns out. We
  	then choose a function of the sample that should behave in a well
  	defined way if the Null Hypothesis was true, and verify if it indeed
  	behaved that way. We will not go into the methodology of choosing such a
  	function in this introductory course, but, in our case, it can be shown
  	that the smart choice is, in most cases—and
  	certainly in the case when we can rely on the Central Limit
  	Theorem—the sample mean is the best choice.
  	If the distribution was assumed to be normal, or, at least, if the CLT
  	can be relied to be in force, the sample mean will be normally
  	distributed around the true mean, and we can use our knowledge of the
  	normal distribution to verify that it did not stray too far from our
  	assumed expectation μ0.
  	In simple words, then, if the sample mean turns out to be not too far
  	from μ0, we may feel
  	comforted in assuming that that is indeed the correct expectation. If,
  	instead, the sample mean is far off, we have strong evidence that μ0 may not be the true
  	expectation. Statistical tests simply formalize this argument in a
  	standard protocol.
    
    
  	For simplicity, we'll discuss here in some detail tests on the mean of
  	normal random variable, when the variance is known. Other situations are
  	similar: you would use different “statistics”, and different
  	distributions (for example, when testing for the mean with unknown
  	variance, you would use the expression discussed in the estimation
  	module for estimating the mean in this case, and use the t
  	distribution with the appropriate number of degrees of freedom, while to
  	test for the variance we would use S2,
  	or s2—look
  	back at the corresponding sections in the Estimation
  	module—depending on whether the
  	“true” mean was known or not).
    
	A Simple Example: Testing the Mean When the Variance is Known
    
  	Let's look at the simplest case: assume we somehow know that our
  	normally distributed random variable has a known variance σ2.
  	Then, if the expected value is indeed μ0,
  	Z=X‾-μ0σ/n
  	is a standard normal variable, and we know its likely values. In fact,
  	we may say that with 95% probability, Z
  	should fall between -1.98,
  	and 1.98.
  	The quantitative step we still have to make is to decide what is our
  	definition of “straying too far”, that is, when do we feel
  	that it is an unlikely chance event if X‾
  	(and hence Z) is too far off. Typical (that
  	is, traditional) thresholds for “unlikely” are values that
  	fall in the “tails” of the distribution, as in the left- and
  	right-most 5% (that is we say the value is not “far
  	off” if it falls in the central 90% of the distribution), or in
  	the left- and right-most 2.5% (the “reasonable” area is now
  	the central 95%—this is often the most
  	common choice), or in the left- and right-most 0.05% (accepting the
  	central 99% of the distribution). If the test fails, say so: “the
  	hypothesis has to be rejected” is the standard term.
    
    
  	If the test is passed, we don't say “the hypothesis is
  	accepted”, because, if we look carefully, the expected value could
  	easily have been different from μ0,
  	and the mean could have still fallen outside the so-called
  	“rejection zone” with reasonable probability—we
  	say “the hypothesis cannot be rejected”. This caution was
  	prominently pushed by Fisher, and it fits well with the first half of
  	the 20th Century scientific philosophy, where positive results are
  	welcomed, but never considered final, while the real breakthroughs come
  	when the experiment “falsifies” the original assumption. In Fisher's, now standard, terminology, a failed test is “significant”,
and a passed test is not.
    
    
  	It is clear that our test may force us to reject the Null Hypothesis,
  	even if it was true, and we just hit an unexpected large
  	“fluctuation” around the mean. Expanding the
  	“acceptance region” from 90% to 95%, to 99%, reduces our
  	risk of falling into this error—called
  	“Error of Type I”. Unfortunately, the wider our acceptance
  	region, the smaller the “rejection region”, so that we may
  	more easily fail to reject a hypothesis that is false, simply because
  	the true mean was different from μ0,
  	but X‾
  	still could reasonably fall in the “acceptance region”. This
  	second possible error is called “Error of Type II”, and it
  	is clear that we cannot keep both errors down simultaneously, since they
  	push in opposite directions.
    
    
  	We will see how to manage this conundrum shortly, but, whatever we may
  	do, note that no result of a statistical test asserts an absolute
  	answer: accepting or rejecting a hypothesis is done on the basis of
  	plausibility, as in, for example, “if the true value had
  	really been μ0, our
  	observation would correspond to an unusual swing away from the center,
  	hence we feel it more reasonable to reject the assumption that the true
  	mean was μ0”.
    
    
  	Let's look at a couple of concrete examples to show how this works in
  	practice. Suppose we are testing our batteries, to check whether they
  	provide indeed 1.5 V of electricity, and are using an instrument that
  	yields measurements with a known standard deviation of 0.05 V. We sample
  	16 batteries from our line and consider the resulting average reading.
  	What should we conclude?
    
    
 	 
    	First we can set our Type I error—this is
    	called the significance level of our test. The most common
    	choices are the usual ones: 90%, 95%, 99%. We can also wait and not
    	commit ourselves yet.
 	 
 	 
    	Next we compute the value of Z=X‾-1.5σ/n,
    	to change our average into an approximate standard normal variable,
    	assuming that the batteries do indeed produce 1.5 V.
 	 
    
    
  	There are two ways to proceed. The simplest way is to fix the
  	significance level and see whether Z falls
  	within the acceptance region, that is within the interval
  	around 0 that has probability equal to the level we have chosen:
    
    
 	 
    	For a 90% level test, that's (-1.64,1.64)
 	 
 	 
    	For a 95% level test, that's (-1.96,1.96)
 	 
 	 
    	For a 99% level test, that's (-2.58,2.58)
 	 
    
    
  	If Z falls within the interval of our
  	choice, we cannot reject the Null Hypothesis, if it doesn't we
  	reject it.
    
    
  	In the more cautious approach, we don't set out with a set significance
  	level, but rather compute the so-called p-value for our Z: that's the highest significance level that
  	would allow us not to reject the Null Hypothesis. Thus, for example, if
  	we ended up with Z=-1.64,
  	the p-value would be 90% (or, rather, 10%, if you decide to use
  	the complementary probability—usage differs
  	among practitioners, but the second is more common). Since a decision
  	has to be made, at this point it would be up to you to decide whether
  	the p-value warrants rejecting or not. This approach has the
  	merit of showing whether yours was a borderline decision, or fairly
  	clear-cut, and is the preferred method: you should report the
  	p-value of your test.
    
    
  	Suppose we ended up with an average reading of 1.3 V. Then, find
    
    
  	4⋅1.3-1.50.05=-80⋅0.2=-16
    
    
  	The p-value (in the second sense) of this result is practically
  	0, so that there is little doubt that we have to reject the hypothesis
  	that the batteries are good. What if we had found an average of 1.4?
    
    
  	4⋅-0.10.05=-8
    
    
  	The p-value is a little larger, but is still practically zero.
  	Let's try 1.45
    
    
  	4-0.050.05=-4
    
    
  	This has a p-value of about 0.001. We would still reject the hypothesis,
  	of course (we would not reject it, if we decided to set our significance
  	at 99.9%—in other words, we would need
  	observations that occur once in a thousand or less to falsely reject the
  	hypothesis, and this is so conservative that it amounts to cheating).
  	The point here is that our sample is not large, but our standard
  	deviation is very small—we have a very
  	sensitive instrument. What reading would cause us to at least start
  	considering the possibility that the batteries are within
  	specifications? Well, if we found Z=-1.95,
  	we would probably not reject the batch, but we would be at the border.
  	That would correspond to
    
    
  	X‾=1.5-1.95⋅σn=1.5-1.95⋅0.054≈1.48
    
	Two-tailed and One-tailed Tests
    
  	The previous example is a “two-tailed” test, in that we would
  	reject the Null Hypothesis both if Z fell
  	into the left, or the right tail of the distribution. Thus, Z=-4
  	is just as bad as Z=4.
    
    
  	Sometimes, we are only worried that our quantity may be either too large
  	or too small, but not both. For example we may have a target amount of a
  	toxic substance in a product (that is an amount that is still safe), but
  	will be fine if it is less. On the other hand, we might instead test for
  	an amount that is too large (and if it was even larger, that certainly
  	would not change our conclusion). Which choice we make makes a huge
  	difference—a point we need to have very
  	clear.
    
    
  	In any case, a test like the first one we mentioned will often be
  	presented as
    
    
  	H0:μ=μ0
    
    
  	H1:μ>μ0
    
    
  	The other option would be similar, with the opposite inequality.
    
    
  	This way of writing is a little odd, because, in fact, the first null
  	hypothesis is, logically speaking, H0:μ⩽μ0.
  	Indeed, if our sample mean turned out to be abnormally low, we would be
  	very happy, even though it is clear that μ0
  	is not a likely value for the “true” mean. To put it
  	differently. to figure out how a test works, check the alternate
  	hypothesis: that's the one that really defines the test. In fact,
  	one could say (even if this is not common) that the Null Hypothesis
  	is the negation of the Alternate Hypothesis. Since the core of a
  	test is in the rejection, not in the acceptance, this is perfectly
  	logical, but habits are hard to change, so expect to see this
  	“asymmetric” test definitions (including in our On Line Stat
  	book).
    
    
  	To see how this type of test works out, let's look at a hypothetical
  	test set as
    
    
 	 
   	 
      	H0:μ=10
   	 
   	 
      	H1:μ>10
   	 
 	 
    
    
  	(again, it would be more rational to write H0:μ⩽10)
  	and suppose the variance is know to be equal to 1, while the observation
  	of a sample of 9 results in a sample mean of 10.5.
    
    
  	Now, since we are not worried about small values, if we are looking at,
  	say, a significance level of 95%, the 5% rejection region is all to the
  	right, and not split between the two tails, as in the previous problem.
  	Let's compute our new Z:
    
    
  	Z=nX‾-μ0σ=3⋅10.5-101=1.5
    
    
  	To determine the p-value, we look at the probability of a
  	standard normal variable to take values larger than 1.5, which is,
  	approximately, 0.144—-definitely not
  	something that would suggest rejecting the hypothesis (it would be
  	accepted at a significance level of even less than 90%). Note that
  	“you are testing if you are at 10”, and this is the
  	assumption that you cannot reject.
    
    
  	Now, suppose you were making the opposite test (with the same data),
  	instead, this time testing whether the dangerous level of 11 was
  	reached:
    
    
 	 
   	 
      	H0:μ=11
   	 
   	 
      	H1:μ<11
   	 
 	 
    
    
  	(again, you may rather think of the Null Hypothesis to be H0:μ⩾11,
  	that is, you are verifying whether the contaminant is above its safe
  	level, rather than whether it is within its safe amount). The rest being
  	equal, Z=-1.5,
  	and the argument is the same (everything is in the opposite direction,
  	but the numbers turn out the same): we have the same p-value,
  	and hence we will definitely not reject the Null Hypothesis. However, in this case, the Null Hypothesis implies the exact opposite of
the Null Hypothesis in the previous case. So, the
  	same data will lead to two opposite conclusions, depending on the
  	question asked: if we ask “are we safe”, the answer is
  	“yes”; if we ask “are we unsafe”, the answer is
  	“yes” as well!
    
    
  	Did you notice what happened? Fact is a statistical test is
  	“stacked” in favor of the Null Hypothesis. Tests are
  	designed to reject it only when there is really strong evidence against
  	it. Clearly, we should not make too much of a passed test, even though
  	the p-value would give us a better understanding of what the
  	data seems to suggest.
    
    
  	However, there is a more detailed analysis that can be performed, giving
  	a much more refined picture of what the test result is. From the
  	previous example we may notice that the data actually cannot really
  	allow us to tell whether μ is 10 or 11.
  	The two values are simply too close to be distinguished. The next module
  	will set out a method to turn this reflection into a quantitative method
  	to understand what we can say in a situation like this.
	

